
1

Machine Learning models' construction for the load behavior of
composite materials in the undamaged zone.

Research Report of UGAL for the project Leap-Re D3T4H2S

Contract: 11/2024 din 21.03.2024
Research Study, 2024

hƩps://www.d3t4h2s.ugal.ro/index.php

This study details the research activities conducted by the UGAL research team between Mars

21st, 2024, and December 31st, 2024. The archive WorkMLModels.zip associated with this report

contains the scripts and files supporting the research presented; they can also be used to follow this

report easily.

As a partner in this project, UGAL is mainly responsible for two types of tasks:

1. The first task involves constructing Machine Learning (ML) models to predict:

- The thermo-mechanical behavior of the composite materials used for producing hydrogen

tanks (material responses).

- The tank response: in this case, we use a "full model" of the tank.

(2) The second task will partially cover the optimization task of implementing the Expert tool

for real-time evaluation and optimization of hydrogen storage vessels. Because optimization

is generally a complex task, we have to prepare theoretical and practical "tools," especially in

this scientific context, even though optimization will be one of the final stages of our project.

PART I

Machine Learning Models for the TracƟon Test

This part presents a prospective work concerning the predictions we can make using ML models

and data collected from specific material tests (traction tests) or simulations. At the same time, we

tested the programming resources and toolboxes that we relied on in our implementations. The

informatic resources are provided by the MATLAB 2024 platform and endowed with appropriate

toolboxes.

1. General Objective and Available Data

Complex mechanical tests concerning the materials envisaged to be used for the hydrogen tanks'
transportation were carried out by our colleagues from S VERTICAL (Mourad NACHTANE) and

2

ENSTA Bretagne (Prof. Mostapha TARFAOUI). The tensile test, one of the most often used
mechanical characterization, was made on an INSTRON 5969 test machine, comprising two tensile
bits between which the specimen is placed. Some partial test data was put at our disposal in our
attempt to generate a Machine Learning (ML) model for stress-strain dependence during the tensile
test of different specimens.

The data collected refers to 12 specimens loaded within different stress and strain ranges. Linear

segments approximated the results, as shown in Figure 1.

Figure 1. The stress-strain dependence during the tensile test of the twelve specimens.

The table below shows the min and max limits of the Stress and Strain parameters for the twelve
specimens.

 Strain (min) Strain (max) Stress (min) Stress (max)
S-1 0 0.01587015 0 2064.24019
S-2 0 0.01874477 0 1540.16043
S-3 0 0.01705347 0 593.258184
S-4 0 0.02798728 0 192.457154
S-5 0 0.00981914 0 101.786008
S-6 0 0.00803761 0 77.3136431
S-7 0 0.00709987 0 63.9780266
S-8 0 0.01537992 0 1121.76279
S-9 0 0.01478241 0 680.072911

S-10 0 0.01536462 0 499.329696
S-11 0 0.01499824 0 1327.03122
S-12 0 0.0146055 0 540.079359

Table 1. Limits of Strain and Stress Values

3

Every specimen is composed of 16 composite layers having different orientations. The

following sequence could characterize a specimen state during the tensile test:

 1 2 16, , , , , Strain Stress (**)

Each of the twelve tested specimens has a specific angle combination , 1, ,16i i that will be

called a pattern.

Table 2. The patterns of the specimens.

For each specimen, the tensile test collected pairs of values Stress – Strain that can placed on a
specific straight line whose equation is given in the table below.

Specimen EquaƟon
S-1 F1(x)= 130393x + 4e-07
S-2 F2(x) = 81800x + 29,48
S-3 F3(x) = 46733x + 0,5042
S-4 F4(x) = 17588x + 0,00055
S-5 F5(x) = 10691x + 0,0192
S-6 F6(x) = 9624,4x
S-7 F7(x) = 9132x+0.0264
S-8 F8(x) = 76670x + 0,054
S-9 F9(x) = 50158x + 0,1227

S-10 F10(x) = 36049x + 0,4325
S-11 F11(x) = 90481x + 0,0401
S-12 F12(x) = 41686x

Table 3. The linear functions where the measurements are placed.

4

2. The Speciϐic Objectives of this Research

As mentioned, the main objective is to construct an ML model to apprehend all the

measurements described before and predict the Stress value for any pattern and Strain value. Our

work's specific objectives are:

1. Generate a dataset big enough to construct the ML model to generalize the response for any

pattern and adequate Strain value.

2. Construct a parametric model (e.g., the multiple linear regression) that is easy to understand

and apply and can be used for comparison with the following models.

3. Construct some nonparametric models (SVM, decision trees, Gaussian process regression,

and neural networks), analyze their accuracy, and compare them to the parametric model.

4. Choose the more accurate parametric model that could be used in further research.

3. A dataset generation for constructing and testing different ML

models.

We used three ideas to yield a dataset that can be used to train and test the ML models.

 A uniformly distributed noise perturbs the patterns; that is, it affects each orientation angle

with a value belonging to [-d, d] (e.g., d=2 grads). This perturbation models the imprecision

in achieving the layer's orientation but also diversifies the orientation values to make the

generalization possible.

 We consider M (e.g., M=30) data points generated by M Strain values for each specimen. The

corresponding M measured Stress values are obtained using the corresponding linear function

iF .

k kStress (Strain) k=1, ,M; i=1, ,12iF .

 Each time a data point is generated, the pattern is perturbated.

Finally, our dataset would have 12*M data points.

Remark: We have a data-generating process, using a probability distribution, that meats the

independent and identically distribution assumptions. The training and test sets will be generated

independently using the same probability distribution.

5

3.1 Generation of the dataset

The program H2Data2 constructs each data point's pattern, functions, strain, and stress values. It

also generates the design matrix called BigData.

The vector PATTERN contains the layers' orientations for each specimen.

PATTERN=zeros(12,16);
PATTERN(1,:)=[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.];
PATTERN(2,:)=[20. -20. 20. -20. 20. -20. 20. -20. 20. -20. 20. -20. 20. -20. 20. -20.];
PATTERN(3,:)=[30. -30. 30. -30. 30. -30. 30. -30. 30. -30. 30. -30. 30. -30. 30. -30.];
PATTERN(4,:)=[45. -45. 45. -45. 45. -45. 45. -45. 45. -45. 45. -45. 45. -45. 45. -45.];
PATTERN(5,:)=[60. -60. 60. -60. 60. -60. 60. -60. 60. -60. 60. -60. 60. -60. 60. -60.];
PATTERN(6,:)=[70. -70. 70. -70. 70. -70. 70. -70. 70. -70. 70. -70. 70. -70. 70. -70.];
PATTERN(7,:)=[90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90.];
PATTERN(8,:)=[0. 45. 0. 90. 0. -45. 0. 45. 45. 0. -45. 0. 90. 0. 45. 0.];
PATTERN(9,:)=[45. 0. -45. 90. 45. 0. -45. 90. 90. -45. 0. 45. 90. -45. 0. 45.];
PATTERN(10,:)=[45. -45. 0. 45. -45. 90. 45. -45. -45. 45. 90. -45. 45. 0. -45. 45.];
PATTERN(11,:)=[0. 30. 0. 90. 0. -30. 0. 30. 30. 0. -30. 0. 90. 0. 30. 0.];
PATTERN(12,:)=[60. 0. -60. 90. 60. 0. -60. 90. 90. -60. 0. 60. 90. -60. 0. 60.];

Implementation:
- F: array of function handles
- strain: matrix with the values of the strain for each specimen and M=30 abscissae
-nc=18;

- BigData=zeros(12*M,nc); % matrix with 360 data points

- PAT=PATTERN(Sk,:)+ random('unif',-delta,delta,[1,16]);
- BigData(i,:)=[PAT, strain(Sk,j), F{Sk}(strain(Sk,j))];

- save('WS_data360',' BigData',' F',' strain',' delta',' M');

Data point #220 would be, for example, the following [18,1] vector

[1.391 45.331 0.34471 91.703 0.30031 -46.96 1.2375 45.435 44.92
0.92624 -45.968 -0.075962 88.909 -1.8056 43.677 -0.96621 0.0051266 393.11].

3.2 Construction of the tables for training and testing

The program H2Construction constructs the tables for training and testing. It splits the

lines of the BigData matrix into two matrices, Dtrain and Dtest.

Each specimen generated 30 (M) data points. The first 25 and last 5 lines will be added to the

DTrain and DTest matrices, respectively. The two matrices will be converted into TableTest and

TableTest, respectively.

nTableTrain DTrai
tTableTest DTes

6

4. Construction of Step Vise models using datasets

The multiple linear regression models we considered also included nonlinear terms (products

of predictors) and used a step-wise technique to construct those models. The model maintains linearity

in terms of its coefficients.

1. Adding x1, FStat = 227.8572, pValue = 1.239117e-38
2. Adding St, FStat = 216.2564, pValue = 3.720389e-37
3. Adding x1:St, FStat = 367.5712, pValue = 8.032568e-54
4. Adding x12, FStat = 53.9613, pValue = 2.01116e-12
5. Adding x12:St, FStat = 95.8075, pValue = 9.11615e-20
6. Adding x13, FStat = 236.636, pValue = 1.49516e-39
7. Adding x13:St, FStat = 148.9911, pValue = 5.765152e-28
8. Adding x12:x13, FStat = 72.9692, pValue = 7.48834e-16
9. Adding x9, FStat = 65.4199, pValue = 1.66602e-14
10. Adding x9:St, FStat = 36.892, pValue = 3.92447e-09
11. Adding x2, FStat = 16.1382, pValue = 7.52075e-05
12. Adding x1:x9, FStat = 14.5624, pValue = 0.000166095
13. Adding x1:x12, FStat = 5.6396, pValue = 0.018218
14. Adding x2:St, FStat = 5.2191, pValue = 0.023075
15. Removing x12:x13, FStat = 0.24892, pValue = 0.61822

Linear regression model:
 Ss ~ 1 + x1*x9 + x1*St + x2*x13 + x2*St + x9*St + x12*St + x13*St

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ ________ _______ ___________

 (Intercept) 66.289 16.348 4.0548 6.4742e-05
 x1 -1.0564 0.90931 -1.1618 0.24629
 x2 5.299 1.5056 3.5196 0.00050263
 x9 -2.1988 0.58916 -3.7322 0.000229
 x12 -1.5438 0.30825 -5.0083 9.6246e-07
 x13 0.42446 0.401 1.0585 0.29071
 St 1.2418e+05 1901.7 65.3 7.0906e-174
 x1:x9 0.04764 0.012162 3.9171 0.00011217
 x1:St -1320.7 54.246 -24.346 1.1118e-71
 x2:x13 -0.065347 0.01489 -4.3885 1.607e-05
 x2:St -176.64 54.038 -3.2687 0.0012122
 x9:St -170.77 29.761 -5.7382 2.4366e-08
 x12:St 666.06 38.01 17.523 3.3209e-47
 x13:St -307.24 37.886 -8.1096 1.5046e-14

7

Figure 2. Linear regression model- Response versus true values

Figure 22. Predicted versus real values for the training

data set

Figure 23. Predicted versus real values for the test data

set

4.1 Comparison of the true stress values to the predicted values

 Stress uPred
 1 1793.4 1771.2

8

 2 1862.4 1812.9
 3 1931.4 1963.1
 4 2000.4 1966.8
 5 2069.4 2062.7
 6 1358.4 1234.1
 7 1409.5 1256.4
 8 1460.6 1339.7
 9 1511.7 1409.9
 10 1562.8 1472.7
 11 691.2 765.74
 12 717.77 837
 13 744.33 830.2
 14 770.9 881.83
 15 797.46 972.66
 16 426.61 455.18
 17 443.02 583.99
 18 459.42 525.39
 19 475.83 588.2
 20 492.24 567.19
 21 90.999 -46.329
 22 94.498 -23.934
 23 97.997 -29.726
 24 101.5 -18.482
 25 105 -27.37
 26 67.043 -83.925
 27 69.621 -118.72
 28 72.2 -102.75
 29 74.779 -121.22
 30 77.357 -129.23
 31 56.218 27.051
 32 58.379 57.544
 33 60.54 60.965
 34 62.701 44.883
 35 64.862 68.942
 36 1022 1067.1
 37 1061.3 1105.3
 38 1100.6 1182.4
 39 1139.9 1202.6
 40 1179.2 1205.6
 41 642.72 608.92
 42 667.43 655.97
 43 692.15 655.66
 44 716.86 755.1
 45 741.58 713.76
 46 480.46 486.48
 47 498.92 462.78
 48 517.39 531.04
 49 535.85 565.14
 50 554.31 608.58
 51 1176.2 1176.3
 52 1221.4 1169.8
 53 1266.6 1207.7
 54 1311.9 1219.9
 55 1357.1 1284.2
 56 527.67 535.89
 57 547.96 557.76
 58 568.26 546.71
 59 588.55 571.09
 60 608.84 620.91

9

Figure 3. Stress-predicted values versus the true measured values.

4.2 Comparison between real and predicted stress values for the
specimen #7 and all the 30 strain's values

 Strain Stress uPred
 0.00023666 2.1876 7.5603
 0.00047332 4.3488 9.0623
 0.00070999 6.51 10.564
 0.00094665 8.6712 12.066
 0.0011833 10.832 13.568
 0.00142 12.994 15.07
 0.0016566 15.155 16.572
 0.0018933 17.316 18.074
 0.00213 19.477 19.576
 0.0023666 21.638 21.078
 0.0026033 23.8 22.58
 0.0028399 25.961 24.082
 0.0030766 28.122 25.584
 0.0033133 30.283 27.085

10

 0.0035499 32.444 28.587
 0.0037866 34.606 30.089
 0.0040233 36.767 31.591
 0.0042599 38.928 33.093
 0.0044966 41.089 34.595
 0.0047332 43.25 36.097
 0.0049699 45.412 37.599
 0.0052066 47.573 39.101
 0.0054432 49.734 40.603
 0.0056799 51.895 42.105
 0.0059166 54.056 43.607
 0.0061532 56.218 45.109
 0.0063899 58.379 46.611
 0.0066265 60.54 48.113
 0.0068632 62.701 49.614
 0.0070999 64.862 51.116

Figure 4 shows a deviated linear placement.

Fig 4. Comparison between real (blue) and predicted stress values(red) for specimen #7 and all the

30 strain values.

11

5. Models based on Support Vector Machines

5.1 First SVM model

Program: H2_modelSVM4

The training parameters are:

Standardized data=yes, Kernel function= Quadratic, Kernel scale=

Automatic, Box constraint= Automatic, Epsilon= Auto

**
 Nr LM RealValue SVM4
 __ _______ _________ _______
 1 1732 1793.4 1684.9
 2 1860.7 1862.4 1815.7
 3 1898.5 1931.4 1916.3
 4 2020.2 2000.4 1946.3
 5 2053 2069.4 1966
 6 1280.4 1358.4 1237.9
 7 1325.2 1409.5 1259.7
 8 1350.6 1460.6 1291.7
 9 1390.2 1511.7 1268.4
 10 1453.7 1562.8 1416.4
 11 776.57 691.2 782.42
 12 830.27 717.77 771.33
 13 817.05 744.33 794.64
 14 924.42 770.9 969.99
 15 862.47 797.46 816.63
 16 590.41 426.61 451.63
 17 458.26 443.02 249.64
 18 604.86 459.42 372.73
 19 560.09 475.83 485.59
 20 585.09 492.24 325.44
 21 -37.373 90.999 39.86
 22 -34.88 94.498 39.649
 23 -32.447 97.997 -14.256
 24 -52.129 101.5 -48.742
 25 -37.333 105 -24.972
 26 -103.89 67.043 -14.329
 27 -114.62 69.621 -68.909
 28 -120.05 72.2 -42.349
 29 -124.01 74.779 -50.366
 30 -120.17 77.357 -73.159
 31 56.668 56.218 40.865
 32 57.595 58.379 32.068
 33 50.58 60.54 17.733
 34 79.963 62.701 57.463
 35 70.683 64.862 -2.7203
 36 1034.2 1022 1009.6
 37 1097.1 1061.3 1047.3
 38 1121.6 1100.6 1086.4
 39 1190.6 1139.9 1123.2
 40 1244.3 1179.2 1149.4
 41 638.1 642.72 612.3
 42 668.63 667.43 589.98

12

 43 692.83 692.15 529.37
 44 742.13 716.86 648.78
 45 711.31 741.58 522.45
 46 465.52 480.46 567.94
 47 468.47 498.92 493.39
 48 530.87 517.39 464.42
 49 560.6 535.85 523.57
 50 541.03 554.31 580.87
 51 1101.1 1176.2 1108
 52 1174.1 1221.4 1208.3
 53 1182.4 1266.6 1204.2
 54 1291.1 1311.9 1281
 55 1271.3 1357.1 1275.3
 56 500.97 527.67 506.3
 57 550.47 547.96 629.11
 58 576.83 568.26 602.14
 59 548.51 588.55 617.1
 60 576.88 608.84 679.57
mdlLoss=
 11770
RMSE (root-mean-square error) Validation= 70.507
RMSE test = 97.712

13

Figure 5. SVM4 model- Response versus true values

>> H2_useSVM4: for specimen #7
 strain RealStress SVM4
 ______ __________ ______
 0.001 9.1584 17.452
 0.002 18.29 23.366
 0.003 27.422 27.53
 0.004 36.554 29.945
 0.005 45.686 30.611
 0.006 54.818 29.527
 0.007 63.95 26.694

14

SVM4 Model with Optimization of Hyperparameters

|===|
| Iter | Eval | Objective: | Objective | BestSoFar | BestSoFar | BoxConstraint| KernelScale | Epsilon | KernelFuncti-| PolynomialOr-| Standardize |
| | result | log(1+loss) | runtime | (observed) | (estim.) | | | | on | der | |
|===|
1	Best	11.761	0.24632	11.761	11.761	50.879	-	5506.1	linear	-	true
2	Best	11.269	0.057955	11.269	11.306	0.0010394	-	55.75	linear	-	false
3	Best	11.101	0.18005	11.101	11.101	3.707	-	1.7182	linear	-	false
4	Accept	11.761	0.090178	11.101	11.102	22.21	322.44	2744.3	gaussian	-	false
5	Best	11.087	0.056985	11.087	11.087	0.051545	-	0.32655	linear	-	false
6	Accept	11.316	8.6758	11.087	11.087	0.0017306	-	0.38008	polynomial	2	false
7	Accept	11.761	0.055333	11.087	11.087	22.54	0.16624	2799.6	gaussian	-	false
8	Accept	11.103	0.077886	11.087	11.087	0.0094022	-	0.55794	linear	-	false
9	Accept	11.135	14.203	11.087	11.088	925.29	-	0.3297	linear	-	false
10	Best	11.076	0.0685	11.076	11.077	0.36097	-	0.329	linear	-	false
11	Accept	11.096	0.10543	11.076	11.085	1.1846	-	0.33354	linear	-	false
12	Best	11.075	0.056443	11.075	11.082	0.24861	-	0.32781	linear	-	false
13	Best	11.074	0.057453	11.074	11.081	0.22007	-	0.32747	linear	-	false
14	Accept	11.761	0.051278	11.074	11.081	0.0629	-	32063	linear	-	false
15	Accept	11.835	0.068064	11.074	11.076	26.375	0.0010591	0.36085	gaussian	-	false
16	Best	11.071	0.049445	11.071	11.071	0.11624	-	1.568	linear	-	false
17	Accept	11.078	0.055216	11.071	11.073	0.17758	-	0.90556	linear	-	false
18	Accept	11.077	0.054596	11.071	11.073	0.13152	-	5.2493	linear	-	false
19	Accept	11.086	0.050962	11.071	11.075	0.056664	-	2.6373	linear	-	false
20	Accept	11.074	0.068646	11.071	11.073	0.27179	-	2.7135	linear	-	false
===											
Iter	Eval	Objective:	Objective	BestSoFar	BestSoFar	BoxConstraint	KernelScale	Epsilon	KernelFuncti-	PolynomialOr-	Standardize
	result	log(1+loss)	runtime	(observed)	(estim.)				on	der	
===											
21	Accept	11.073	0.060873	11.071	11.073	0.25692	-	2.5645	linear	-	false
22	Accept	11.077	0.074086	11.071	11.073	0.57366	-	7.8012	linear	-	false
23	Accept	11.072	0.065127	11.071	11.072	0.27767	-	3.2501	linear	-	false
24	Accept	28.526	14.596	11.071	11.075	956.21	-	0.71929	polynomial	3	false
25	Best	10.54	0.068093	10.54	10.541	58.131	-	0.32647	linear	-	true
26	Accept	11.835	0.073609	10.54	10.541	35.687	0.0015134	0.52674	gaussian	-	true
27	Accept	11.761	0.046824	10.54	10.541	31.597	0.0064668	32451	gaussian	-	true
28	Best	7.9513	4.5132	7.9513	7.9515	937.68	-	0.45123	polynomial	2	true
29	Accept	11.761	0.042463	7.9513	7.9524	0.0010158	-	30111	polynomial	2	true
30	Accept	11.761	0.045145	7.9513	7.9526	0.0010001	-	28809	polynomial	3	true

__

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 54.9026 seconds
Total objective function evaluation time: 43.9151

1

Observed objective function value = 7.9513
Estimated objective function value = 7.9526
Function evaluation time = 4.5132

Estimated objective function value = 7.9526
Estimated function evaluation time = 4.5076

mdlLoss= 8492.6
 Nr LM RealValue SVM
 __ _______ _________ _______

 1 1732 1793.4 1703.7
 2 1860.7 1862.4 1836.2
 3 1898.5 1931.4 1851
 4 2020.2 2000.4 1942.6
 5 2053 2069.4 1978.7
 6 1280.4 1358.4 1181.9
 7 1325.2 1409.5 1319.7
 8 1350.6 1460.6 1334.2
 9 1390.2 1511.7 1318.2
 10 1453.7 1562.8 1405.9
 11 776.57 691.2 752.59
 12 830.27 717.77 809.04
 13 817.05 744.33 821.8
 14 924.42 770.9 874.66
 15 862.47 797.46 845.05
 16 590.41 426.61 456.78
 17 458.26 443.02 312.86
 18 604.86 459.42 364.27
 19 560.09 475.83 311.76
 20 585.09 492.24 436.92
 21 -37.373 90.999 -2.4286
 22 -34.88 94.498 -4.0187
 23 -32.447 97.997 -69.107
 24 -52.129 101.5 -109.96
 25 -37.333 105 -23.563
 26 -103.89 67.043 -63.279
 27 -114.62 69.621 -120.44
 28 -120.05 72.2 -96.765
 29 -124.01 74.779 -59.83
 30 -120.17 77.357 -101.09
 31 56.668 56.218 54.417
 32 57.595 58.379 59.222
 33 50.58 60.54 40.54
 34 79.963 62.701 51.446
 35 70.683 64.862 48.108
 36 1034.2 1022 970.44
 37 1097.1 1061.3 1062.4
 38 1121.6 1100.6 1055.3
 39 1190.6 1139.9 1159.2
 40 1244.3 1179.2 1161.8
 41 638.1 642.72 637.65
 42 668.63 667.43 649.23
 43 692.83 692.15 658.06
 44 742.13 716.86 689.85
 45 711.31 741.58 642.64
 46 465.52 480.46 468.55
 47 468.47 498.92 454.03
 48 530.87 517.39 494.98
 49 560.6 535.85 496.77
 50 541.03 554.31 524.12

2

 51 1101.1 1176.2 1125
 52 1174.1 1221.4 1185.4
 53 1182.4 1266.6 1220.6
 54 1291.1 1311.9 1282.4
 55 1271.3 1357.1 1291.5
 56 500.97 527.67 495.97
 57 550.47 547.96 533.09
 58 576.83 568.26 543.67
 59 548.51 588.55 555.36
 60 576.88 608.84 579.53

Remark: A small increase in quality

5.2 SVM with Hyperparameters' Optimization and grade=2

SVM Model 2
(Model SVM 22)-

The model is trained using the MATLAB function fitrsvm as below:

mdlSVM2=fitrsvm(TableTrain, "Ss", 'Standardize', true,...
'kernelfunction', 'polynomial', 'PolynomialOrder',2,
'KernelScale',3.001,
'BoxConstraint',0.8143
'Epsilon',4.0715
'OptimizeHyperparameters',' all');

mdlLoss=
 6448.2

 Nr LM RealValue SVM
 __ _______ _________ ______

 1 1732 1793.4 1722.4
 2 1860.7 1862.4 1752
 3 1898.5 1931.4 1779.1
 4 2020.2 2000.4 1786.9
 5 2053 2069.4 1795.6
 6 1280.4 1358.4 1299.1
 7 1325.2 1409.5 1325.1
 8 1350.6 1460.6 1325.9
 9 1390.2 1511.7 1296
 10 1453.7 1562.8 1283.2
 11 776.57 691.2 695.27
 12 830.27 717.77 749.01
 13 817.05 744.33 787.79
 14 924.42 770.9 772.34
 15 862.47 797.46 754.7
 16 590.41 426.61 417.99
 17 458.26 443.02 431.28
 18 604.86 459.42 438.98
 19 560.09 475.83 441.98
 20 585.09 492.24 441.92
 21 -37.373 90.999 93.074 A SVM model that gives good
 22 -34.88 94.498 95.691 predictions in this range.
 23 -32.447 97.997 100.18
 24 -52.129 101.5 105.26
 25 -37.333 105 110.17

3

 26 -103.89 67.043 68.82
 27 -114.62 69.621 71.944
 28 -120.05 72.2 74.032
 29 -124.01 74.779 77.312
 30 -120.17 77.357 80.144
 31 56.668 56.218 57.801
 32 57.595 58.379 61.307
 33 50.58 60.54 63.944
 34 79.963 62.701 66.879
 35 70.683 64.862 69.335
 36 1034.2 1022 986.38
 37 1097.1 1061.3 1024.8
 38 1121.6 1100.6 1045.1
 39 1190.6 1139.9 1055.9
 40 1244.3 1179.2 1068.4
 41 638.1 642.72 635.92
 42 668.63 667.43 647.59
 43 692.83 692.15 663.69
 44 742.13 716.86 680.33
 45 711.31 741.58 688.16
 46 465.52 480.46 474.78
 47 468.47 498.92 489.04
 48 530.87 517.39 499.4
 49 560.6 535.85 512.94
 50 541.03 554.31 521.8
 51 1101.1 1176.2 1146.3
 52 1174.1 1221.4 1179.7
 53 1182.4 1266.6 1205.6
 54 1291.1 1311.9 1224.8
 55 1271.3 1357.1 1232.6
 56 500.97 527.67 519.48
 57 550.47 547.96 543.12
 58 576.83 568.26 564.46
 59 548.51 588.55 565.74
 60 576.88 608.84 581.46

RMSEValid = 5.1788
RMSETest = 80.301
Size: 40kB

>> H2_UseSVM2

 strain RealStress SVM2
 0.001 9.1584 8.1594
 0.002 18.29 16.018
 0.003 27.422 25.319
 0.004 36.554 35.301
 0.005 45.686 45.576
 0.006 54.818 56.146
 0.007 63.95 67.326

4

5

5.3 SVM Model with cubic Kernel function –(SVM16)

Non-optimizable version:
 'KernelFunction', 'polynomial', ...
 'PolynomialOrder', 3, ...
 'KernelScale', 3.001, ...
 'BoxConstraint', Automatic, ...
 'Epsilon', Auto, ...
 'Standardize', true);

 Nr LM RealValue SVM16
 __ _______ _________ ______
 1 1732 1793.4 1823.5
 2 1860.7 1862.4 1915.7
 3 1898.5 1931.4 1990.9
 4 2020.2 2000.4 2109.4
 5 2053 2069.4 2174.2
 6 1280.4 1358.4 1254.2
 7 1325.2 1409.5 1329.6
 8 1350.6 1460.6 1375.3
 9 1390.2 1511.7 1403.1
 10 1453.7 1562.8 1450.6
 11 776.57 691.2 749.72
 12 830.27 717.77 796.12
 13 817.05 744.33 835.09
 14 924.42 770.9 852.53
 15 862.47 797.46 839.77
 16 590.41 426.61 392.61
 17 458.26 443.02 399.61
 18 604.86 459.42 429.55
 19 560.09 475.83 428.53
 20 585.09 492.24 447.42
 21 -37.373 90.999 47.679
 22 -34.88 94.498 35.616
 23 -32.447 97.997 39.292
 24 -52.129 101.5 42.684
 25 -37.333 105 34.877
 26 -103.89 67.043 82.007
 27 -114.62 69.621 89.711
 28 -120.05 72.2 81.055
 29 -124.01 74.779 81.242
 30 -120.17 77.357 56.943
 31 56.668 56.218 81.491
 32 57.595 58.379 84.83
 33 50.58 60.54 89.598
 34 79.963 62.701 97.737
 35 70.683 64.862 93.759
 36 1034.2 1022 1027.8
 37 1097.1 1061.3 1100.1
 38 1121.6 1100.6 1139.1
 39 1190.6 1139.9 1208.7
 40 1244.3 1179.2 1234.9
 41 638.1 642.72 676.06
 42 668.63 667.43 693.53
 43 692.83 692.15 719.39
 44 742.13 716.86 752.67
 45 711.31 741.58 759.86
 46 465.52 480.46 498.21
 47 468.47 498.92 508.85
 48 530.87 517.39 547.56

6

 49 560.6 535.85 580.99
 50 541.03 554.31 608.88
 51 1101.1 1176.2 1136.5
 52 1174.1 1221.4 1188.4
 53 1182.4 1266.6 1235.4
 54 1291.1 1311.9 1304.7
 55 1271.3 1357.1 1320.7
 56 500.97 527.67 515.08
 57 550.47 547.96 556.47
 58 576.83 568.26 582.27
 59 548.51 588.55 583.73
 60 576.88 608.84 615.13

RMSEValid = 34.945

RMSETest = 52.108

7

>> H2_useSVM16
 strain RealStress SV16
 ______ __________ ______

 0.001 9.1584 33.037
 0.002 18.29 45.31
 0.003 27.422 56.359
 0.004 36.554 66.258
 0.005 45.686 75.08
 0.006 54.818 82.898
 0.007 63.95 89.786

8

6. Neural Network Models

6.1 First NN Model1

The NN has one hiden layer.

....'LayerSizes', 10,
 'Activations', 'relu',
 'Lambda', 0,
 'IterationLimit', 1000,
 'Standardize', true);
>> H2_modelNN1

 Nr LM RealValue NN
 __ _______ _________ ______

 1 1732 1793.4 1768.9
 2 1860.7 1862.4 1855.2
 3 1898.5 1931.4 1911
 4 2020.2 2000.4 2003.1
 5 2053 2069.4 2055.2
 6 1280.4 1358.4 1359.6
 7 1325.2 1409.5 1437.7
 8 1350.6 1460.6 1484.2
 9 1390.2 1511.7 1494.5
 10 1453.7 1562.8 1536.2
 11 776.57 691.2 655.52
 12 830.27 717.77 749.93
 13 817.05 744.33 798.6
 14 924.42 770.9 787.92
 15 862.47 797.46 810.36
 16 590.41 426.61 474.05
 17 458.26 443.02 541.8
 18 604.86 459.42 652.92
 19 560.09 475.83 695.52
 20 585.09 492.24 782.71
 21 -37.373 90.999 99.325
 22 -34.88 94.498 94.041
 23 -32.447 97.997 95.63
 24 -52.129 101.5 106.8
 25 -37.333 105 94.882
 26 -103.89 67.043 57.712
 27 -114.62 69.621 58.986
 28 -120.05 72.2 54.844
 29 -124.01 74.779 55.906
 30 -120.17 77.357 56.941
 31 56.668 56.218 58.724
 32 57.595 58.379 58.315
 33 50.58 60.54 63.18
 34 79.963 62.701 61.615

9

 35 70.683 64.862 68.378
 36 1034.2 1022 995.85
 37 1097.1 1061.3 1033.1
 38 1121.6 1100.6 1082.3
 39 1190.6 1139.9 1179.1
 40 1244.3 1179.2 1190.7
 41 638.1 642.72 631.49
 42 668.63 667.43 658.34
 43 692.83 692.15 707.84
 44 742.13 716.86 756.03
 45 711.31 741.58 779.49
 46 465.52 480.46 529.22
 47 468.47 498.92 574.27
 48 530.87 517.39 625.46
 49 560.6 535.85 710.36
 50 541.03 554.31 789.52
 51 1101.1 1176.2 1135.2
 52 1174.1 1221.4 1192.4
 53 1182.4 1266.6 1231.3
 54 1291.1 1311.9 1298.1
 55 1271.3 1357.1 1298.5
 56 500.97 527.67 538.22
 57 550.47 547.96 596.48
 58 576.83 568.26 641.77
 59 548.51 588.55 653.03
 60 576.88 608.84 714.61

The program H2_UseNN1 gives the predictions for specimen #7 and all the strain values.

10

>> H2_UseNN1
 strain RealStress Predicted
 ______ __________ _________

 0.001 9.1584 3.1531 ?????
 0.002 18.29 25.99
 0.003 27.422 34.617
 0.004 36.554 36.614
 0.005 45.686 45.903
 0.006 54.818 55.192
 0.007 63.95 64.481

11

6.2 NN Model1 (Direct)

Characteristics: "Standardize", true;
"LayerSizes",10;
"Activations", "relu";
IterationLimit=100,Lambda=0

>> H2_modelNN1D

RMSEValid=
 23.985

 Nr RealValue NND
 __ _________ ______

 1 1793.4 1751.2
 2 1862.4 1877
 3 1931.4 1919.2b
 4 2000.4 2035.6
 5 2069.4 2067.1
 6 1358.4 1347.6
 7 1409.5 1435.9
 8 1460.6 1471
 9 1511.7 1496.8
 10 1562.8 1532.9
 11 691.2 658.42
 12 717.77 719.43
 13 744.33 748.96
 14 770.9 781.51
 15 797.46 761.74
 16 426.61 563.99
 17 443.02 598.33
 18 459.42 686.84
 19 475.83 736.81
 20 492.24 829.11
 21 90.999 33.024
 22 94.498 18.488
 23 97.997 37.633
 24 101.5 30.626
 25 105 51.785
 26 67.043 35.395
 27 69.621 32.712
 28 72.2 52.718
 29 74.779 62.093
 30 77.357 38.266
 31 56.218 49.459
 32 58.379 57.133
 33 60.54 57.705
 34 62.701 56.72

12

 35 64.862 57.527
 36 1022 1044.1
 37 1061.3 1098.4
 38 1100.6 1128.5
 39 1139.9 1236.8
 40 1179.2 1248.9
 41 642.72 627.12
 42 667.43 665.68
 43 692.15 686.29
 44 716.86 696.36
 45 741.58 688.86
 46 480.46 553.68
 47 498.92 610.35
 48 517.39 674.5
 49 535.85 737.42
 50 554.31 798.96
 51 1176.2 1125
 52 1221.4 1191.8
 53 1266.6 1219.3
 54 1311.9 1305.5
 55 1357.1 1288.1
 56 527.67 544.26
 57 547.96 584.32
 58 568.26 625.9
 59 588.55 624.68
 60 608.84 635.05

RMSE=
 90.388
mdlLoss = 4101.1

13

Figure 10_2_NN1 Direct

14

6.3 The second NN - Model10

NN with optimization
 'LayerSizes', [166 280 298], ...
 'Activations', 'relu', ...
 'Lambda', 3.63e-08, ...
 'IterationLimit', 1000, ...
 'Standardize', true);

>> H2_modelNN2
RMSE(Valid)=
 6.735

 Nr LM RealValue NN
 __ _______ _________ ______

 1 1732 1793.4 1769.9
 2 1860.7 1862.4 1825.2
 3 1898.5 1931.4 1859.4
 4 2020.2 2000.4 1918.9
 5 2053 2069.4 1958
 6 1280.4 1358.4 1363.9
 7 1325.2 1409.5 1424.6
 8 1350.6 1460.6 1449.5
 9 1390.2 1511.7 1448.2
 10 1453.7 1562.8 1442.6
 11 776.57 691.2 670.6
 12 830.27 717.77 723.63
 13 817.05 744.33 774.62
 14 924.42 770.9 742.99
 15 862.47 797.46 732.08
 16 590.41 426.61 426.63
 17 458.26 443.02 445.04
 18 604.86 459.42 465.19
 19 560.09 475.83 481.25
 20 585.09 492.24 510.72
 21 -37.373 90.999 92.233
 22 -34.88 94.498 96.111
 23 -32.447 97.997 102.73
 24 -52.129 101.5 107.33
 25 -37.333 105 113.38
 26 -103.89 67.043 67.583
 27 -114.62 69.621 70.387
 28 -120.05 72.2 73.247
 29 -124.01 74.779 76.896
 30 -120.17 77.357 80.282
 31 56.668 56.218 55.927
 32 57.595 58.379 57.377
 33 50.58 60.54 59.053
 34 79.963 62.701 60.786
 35 70.683 64.862 62.169

15

 36 1034.2 1022 1015.5
 37 1097.1 1061.3 1073.3
 38 1121.6 1100.6 1116.5
 39 1190.6 1139.9 1168.5
 40 1244.3 1179.2 1211.7
 41 638.1 642.72 652.63
 42 668.63 667.43 671.7
 43 692.83 692.15 701.27
 44 742.13 716.86 724.54
 45 711.31 741.58 746.62
 46 465.52 480.46 472.74
 47 468.47 498.92 481.76
 48 530.87 517.39 499.55
 49 560.6 535.85 522.78
 50 541.03 554.31 541.7
 51 1101.1 1176.2 1152.9
 52 1174.1 1221.4 1196
 53 1182.4 1266.6 1231.5
 54 1291.1 1311.9 1280.4
 55 1271.3 1357.1 1302.3
 56 500.97 527.67 525.6
 57 550.47 547.96 555.78
 58 576.83 568.26 578.95
 59 548.51 588.55 586.37
 60 576.88 608.84 609.34
Optimizer: Bayesian optimization
RMSE(test)=34.385
MSE(Test)=1182.3
MAE(Test)=19.82
Model size= 1MB

16

17

The program H2_UseNN2 gives the predictions for specimen #7 and
all the strain values and recalls the NN1's predictions.

>> H2_UseNN2
 The following table compares the predictions made by the two
neural networks.

 strain NN1 RealStress NN2
 ______ ______ __________ ______

 0.001 3.1531 9.1584 9.756
 0.002 25.99 18.29 18.649
 0.003 34.617 27.422 27.809
 0.004 36.614 36.554 36.448
 0.005 45.903 45.686 45.113
 0.006 55.192 54.818 54.097
 0.007 64.481 63.95 60.975

Conclusion

 The proposed way to enrich the dataset (the data-generating process) seems to

be effective for treating this problem of using ML prediction.

 The accuracy of the predictions also depends on the accuracy of the initial data

furnished by the measurements.

 An analysis should be conducted concerning some parameters' values (d, M,

the number of specimens) to study the parameters' contribution to the models'
accuracy. This analysis is reported for an ulterior stage of the project if it will
be needed.

 The set of predictions must be enriched to validate the ML models over very

large zones of the prediction space.

7. GENERALIZATION TEST USING THE MODEL NN2.

So far, the generalization accuracy of ML models has been tested using the testing datasets

reserved for this objective. The testing dataset comes from the same initial traction tests; they have

the same real physical support. The real generalization power of the ML model would be proven for

data points that the ML model has never "seen".

18

In this section, we shall test the generalization power of the NN2 model, i.e., the best-generated

model, considering data points corresponding to fictitious specimens.

Hypothesis: The data points are fictitious; they belong neither to the training nor the test data.

Objectif: To test the generalization aptitude of the NN2 model.

The script H2_UseNN2_generalization considers data points that are generated by changing
the two middle orientations of specimen 8 (…45, 45…) with 4 pairs of values ([40,40], [20,20], [20,-
20], [-20,-20])). It predicts the Stress for 30 strain values.

The strain column shows the 30 values of the strain equally spaced out in the given range. The
predicted stress value is given in the pred_NN2 column.
The column ss_real_8 shows the stress value for specimen 8 at the same strain. This value can be
used to compare the two specimens to see whether the change produced by the two new orientations
is realistic.

>> H2_UseNN2_generalization

The fictitious specimens are "neighboring" S8:
PATTERN(8,:)=[0. 45. 0. 90. 0. -45. 0. 45. 45. 0. -45. 0. 90. 0. 45. 0.];

New pattern: the middle values are changed
NEW PATTERN=[0. 45. 0. 90. 0. -45. 0. 40. 40. 0. -45. 0. 90. 0. 45. 0.];

 strain ss_real_8 pred_NN2
 __________ _________ ________

 0.00051266 39.36 44.474
 0.0010253 78.666 85.151
 0.001538 117.97 123.93
 0.0020507 157.28 162.53
 0.0025633 196.58 201.91
 0.003076 235.89 243.06
 0.0035886 275.2 283.33
 0.0041013 314.5 322.53
 0.004614 353.81 359.95
 0.0051266 393.11 398.18
 0.0056393 432.42 438.08
 0.006152 471.73 479.12
 0.0066646 511.03 518.58
 0.0071773 550.34 557.92
 0.00769 589.64 597.44
 0.0082026 628.95 638.04
 0.0087153 668.26 676.85
 0.009228 707.56 715.06
 0.0097406 746.87 753.4
 0.010253 786.17 792.45

19

 0.010766 825.48 832.01
 0.011279 864.78 873.07
 0.011791 904.09 913.47
 0.012304 943.4 954.75
 0.012817 982.7 1000.3
 0.013329 1022 1048.9
 0.013842 1061.3 1094.9
 0.014355 1100.6 1135.9
 0.014867 1139.9 1178.1
 0.01538 1179.2 1222.1

New pattern: the middle values are changed
NEW PATTERN=[0. 45. 0. 90. 0. -45. 0. 20. 20. 0. -45. 0. 90. 0. 45. 0.];

 strain ss_real_8 pred_NN2
 __________ _________ ________

 0.00051266 39.36 64.802
 0.0010253 78.666 104.27
 0.001538 117.97 143.65
 0.0020507 157.28 184.09
 0.0025633 196.58 225.35
 0.003076 235.89 266.53
 0.0035886 275.2 308.15
 0.0041013 314.5 349.8
 0.004614 353.81 394.45
 0.0051266 393.11 439
 0.0056393 432.42 482.58
 0.006152 471.73 522.31
 0.0066646 511.03 562.62
 0.0071773 550.34 602.58
 0.00769 589.64 641.33
 0.0082026 628.95 680.05
 0.0087153 668.26 718.55
 0.009228 707.56 757.06
 0.0097406 746.87 797.97
 0.010253 786.17 841.82
 0.010766 825.48 887.6
 0.011279 864.78 935.27
 0.011791 904.09 982.03
 0.012304 943.4 1027.7
 0.012817 982.7 1075.9
 0.013329 1022 1123.7
 0.013842 1061.3 1164.5
 0.014355 1100.6 1206.3
 0.014867 1139.9 1248.5
 0.01538 1179.2 1289.5

20

New pattern: the middle values are changed
NEW PATTERN=[0. 45. 0. 90. 0. -45. 0. 20. -20. 0. -45. 0. 90. 0. 45. 0.];

 strain ss_real_8 pred_NN2
 __________ _________ ________

 0.00051266 39.36 74.537
 0.0010253 78.666 120.06
 0.001538 117.97 165.44
 0.0020507 157.28 210.68
 0.0025633 196.58 256.08
 0.003076 235.89 301.33
 0.0035886 275.2 348.86
 0.0041013 314.5 394.38
 0.004614 353.81 439.93
 0.0051266 393.11 485.3
 0.0056393 432.42 528.65
 0.006152 471.73 572.35
 0.0066646 511.03 615.23
 0.0071773 550.34 657.91
 0.00769 589.64 702.49
 0.0082026 628.95 749.76
 0.0087153 668.26 798.28
 0.009228 707.56 847.01
 0.0097406 746.87 896.05
 0.010253 786.17 943.3
 0.010766 825.48 993
 0.011279 864.78 1043.2
 0.011791 904.09 1093.5
 0.012304 943.4 1145.3
 0.012817 982.7 1193.5
 0.013329 1022 1242.2
 0.013842 1061.3 1288.4
 0.014355 1100.6 1330.6
 0.014867 1139.9 1371.8
 0.01538 1179.2 1413

New pattern: the middle values are changed
NEW PATTERN=[0. 45. 0. 90. 0. -45. 0. -20. -20. 0. -45. 0. 90. 0. 45. 0.];

 strain ss_real_8 pred_NN2
 __________ _________ ________

 0.00051266 39.36 83.895
 0.0010253 78.666 128.42
 0.001538 117.97 174.22
 0.0020507 157.28 220.58
 0.0025633 196.58 266.74

21

 0.003076 235.89 314.29
 0.0035886 275.2 364.12
 0.0041013 314.5 411.43
 0.004614 353.81 453.36
 0.0051266 393.11 495.92
 0.0056393 432.42 538.56
 0.006152 471.73 581.36
 0.0066646 511.03 625.21
 0.0071773 550.34 670.05
 0.00769 589.64 716.49
 0.0082026 628.95 766.19
 0.0087153 668.26 816.25
 0.009228 707.56 867.16
 0.0097406 746.87 917.29
 0.010253 786.17 967.76
 0.010766 825.48 1017.8
 0.011279 864.78 1070.1
 0.011791 904.09 1122.9
 0.012304 943.4 1174.6
 0.012817 982.7 1218.4
 0.013329 1022 1257.1
 0.013842 1061.3 1298.5
 0.014355 1100.6 1339.8
 0.014867 1139.9 1381.1
 0.01538 1179.2 1422.4

22

The difficulty is in validating the predictions in this stage. Verifying the predictions using a
simulation platform or, even better, making real tensile tests would be necessary. Our colleagues
from P2 will accomplish this task.

PART II

8. ML algorithms that Emulate Metaheuristic Algorithms for

optimal decision-making

Employing Metaheuristic algorithms for the optimal decision-making
process.

23

Some optimization problems need a metaheuristic algorithm (MA) in searching for the optimal

solution, especially when the optimization function has difficult characteristics (distributed

parameters, nonlinearities, etc.). That is a vast subject, already treated in the literature, that renders

MAs realistic candidate tools for the optimization modules (optimizers). These tools are robust and

flexible but sometimes involve very large computation efforts. There is an interesting and effective

approach that allows replacing an MA algorithm with an ML algorithm only in the execution phase

to reduce drastically the computation effort.

This report's authors have proposed the analysis of possible "equivalence" between ML

algorithms and MA within two simulated studies.

II.1 MetaheurisƟc algorithm for opƟmal decision-making

In Figure II.1, the optimal decision-making is presented as a closed-loop evolution, where:

 X (XX) is the set of variables whose evolution must be optimized, and U* is the optimal

decision variable set.

 The objective function is a function of vectors X and U, which must be optimized.

 The variable k covers the situation when the decision process is recursive. If this is not

the case, the indexation (k and k+1) must not be considered.

In this figure, the optimizer is based on the Particle Swarm Optimization metaheuristic (an

adaptive version, Adaptive PSO Algorithm). Any other metaheuristic can be used; a very realistic way

24

to construct optimizers is to use Genetic Algorithms (Evolutionary Algorithms). Generally speaking,

we can use an appropriate MA for the optimal decision problem at hand.

Roughly speaking, the optimizer responds to the following problem: "When the process is

characterized by the variables set X, what are the values of the decision variables U that optimize the

objective function?". The optimizer finds the solution: U*.

The following paper presents research results obtained in the framework of this project, and it

describes the principle of the possible equivalence between ML algorithms and MAs for optimal

decision-making.

Mînzu, V.; Arama, I.; Rusu, E. Machine Learning Algorithms That Emulate Controllers Based

on ParƟcle Swarm OpƟmizaƟon—An Application to a Photobioreactor for Algal Growth. Processes

2024, 12, 991, https://doi.org/10.3390/pr12050991.

Remark 1: As a general principle, if an optimizer is constructed using an MA, then we can

achieve an ML algorithm that "captures" the optimality of the MA. The ML algorithm can emulate

the MA (Figure II.2).

II.2 The ML optimizer that is "equivalent" to an MA optimizer

We can construct a new optimizer, called ML optimizer, which is simpler than the previous one

because it contains only the trained ML model without a searching process or integrations.

In the mentioned paper, this principle is applied to a specific optimal decision process, the

optimal control of a dynamic process. (Because a specific control structure was adopted, a process

model is considered as an example: a photobioreactor). All of these do not affect the generality of the

presentation.

Remark 2: The paper presents general principles and implementation aspects of the ML algorithm,

which "captures" the optimality of the APSOA, even though it exemplifies the procedure

using a particular optimizer.

Why is our desideratum to replace the APSOA (or any MA) optimizer?

25

Owing to extensive searchings for the optimal solution inside space X and possible numerous

numerical integrations, there is a big computational effort that leads to a large optimizer execution

time. The main motivation of this work was to decrease the computational effort and, consequently,

the optimizer execution time. This work proposed replacing the APSOA with an ML model that has

"learned" the optimal behavior of the APSOA.

Remark 3. The training data are obtained through simulations of a large enough set of decision-

making using the MA optimizer (here, the APSOA).

The data set generation supposes a large enough number of optimizer's simulations using

APSOA. After each simulation of the optimizer, a couple of vectors (X, U*) are recorded (see Figure

II.1); that is a data point. The simulations are conducted in the initial phase to collect the data points

for the training and testing.

A design procedure is given below.

Design Procedure

1. Write the "APSOA Optimizer" program for the considered optimization problem

based on the APSOA, which finds the quasi-optimal solution U* for a given initial

vector X.

2. Repeat M times the execution of "APSOA Optimizer" to produce M sequences (X, U)

and save them in a data structure.

3. Choose, construct, and test an algorithm called "Optimizer_ML" that emulates the

optimal behavior of the APSOA. This step is repeated until an accurate and appropriate

model is found.

4. Integrate the "Optimizer_ML" into the final optimization program.

The design procedure can also be followed mutatis mutandis when the optimization problem is

solved using evolutionary algorithms (such as genetic algorithms). The program at step 1 must use

the new MA to search for the quasi-optimal solution. Details for this case can be found in the

following paper, having the same authors:

Mînzu, V.; Arama, I. A Machine Learning Algorithm That Experiences the Evolutionary Algorithm's Predictions—
An Application to Optimal Control; Mathematics 2024, 12(2), 187. https://doi.org/10.3390/math12020187.

The new optimizer should preserve the optimal behavior of the decision-making process. In identical

conditions, the ML decision process must also be quasi-optimal.

26

Remark 4. The "Optimizer_ML" emulates the "APSOA Optimizer," which means that both have

the same behavior; they give near identical quasi-optimal solutions.

Because the linear regression could seem much too simple, we have also studied other types of

models (trees, support vector machines, Regression Neural Networks, and Gaussian processes) trying

to improve capturing the optimality, the final target being that the designed ML optimizer would better

approach the optimal solution. For the case study presented in the article mentioned above, the

obtained models perform less than those of the Linear Regression and RNN models. In other

optimization cases, many kinds of ML algorithms must also be analyzed, considering the ML

optimizer's size. It is a design matter.

Conclusion:

• When we solve a new optimization problem, sometimes we need an MA (PSO, EA,

etc.) that searches for the optimal solution U* inside of the optimization space U. If the

optimizer's execution time is not acceptable, we can use the approach presented before

to create an ML optimizer. However, initially, we need the MA to search for the

optimal solution.

• The ML optimizer replaces the MA optimizer only in execution when the optimal

decision is made. So, the optimizer's execution time is diminished.

The article mentioned above gives more details concerning the principle and the

implementation of this approach. These details are not repeated in this presentation. In addition, the

Supplementary Materials attached to this article contain all the MATLAB programs that can be used

in our next work.

PART III

9. The generalization power of the ML algorithms already

developed.

This part describes how we can test the generalization power of ML models already developed

in the first part of this report. The generalization power of the ML model would be proven for data

points that the model has never "seen"; that is, they belong neither to the training data nor the test

data. So, the first problem is to generate data points situated in the model's

27

The following text was written to propose an article with authors from UGAL and P2 in the

future.

4. Implementation of Machine Learning Models
 This section is dedicated to the intricate process of generating ML models for the stress-strain
dependence during the tensile test of different specimens. The initial step involves preparing the
datasets for the learning process and constructing the parametric and nonparametric ML models.

As mentioned, the main objective is to construct ML models that would apprehend all the
measurements described before and predict the Stress value for any pattern (combination of
orientations) and a given Strain value. Our work's specific objectives were set with the anticipation
of achieving this ultimate goal in mind:

1. Generate a dataset of significant size. This dataset will be used to construct the ML model,
enabling it to provide a generalized response for any pattern and an appropriate Strain value.

2. Construct a parametric model (e.g., multiple linear regression) that is easy to understand and
apply and can be compared with the following models.

3. Construct some nonparametric models (SVM, decision trees, Gaussian process regression, and
neural networks), analyze their accuracy, and compare them to the parametric model. Out of
many ML models investigated, we chose to present two nonparametric models (SVM and
Regression NN). The last ones yielded four trained and tested models, the most effective and
appropriate to the considered data set.

4. Carefully select the most accurate parametric models that could be used in further research,
providing a solid foundation for future studies.

Remark 1: For our problem, many SVM and Regression NN models could be constructed, some of
them having potentially superior capabilities to predict the behavior of the stencils. Our
objective was not to find their best but to validate our approach: to prove that ML models
can accurately predict stress-strain behavior.

4.1 Data Preparation

*** This part is covered by PART 1.***

4.2 Construction of ML Models

4.2.1 A multiple linear regression model

The first ML model constructed to fit the data set is parametric: a multiple linear regression model
that allows the possibility of including nonlinear terms as the interactions, that is, the product of
predictor variables. The model maintains its linearity about its coefficients.

Out of the linear regression models developed in our work, we present only that based on the step-
wise regression strategy. The latter consists of adding or removing features from a constant model. In
the MATLAB system used in our implementation, this strategy is implemented by a specialized
function step-wise (T), which returns a model that fits the dataset in T.

The features of this model are named x1,…,x16 for the orientations 1, 2,…, 16, and St and Ss for
the Strain and Stress, respectively. Appendix A describes the results obtained using the step-wise
regression strategy. One of the best linear regression models for Stress has the following structure:

Ss ~ 1 + x1 + x2 + x9 + x12 + x13 + St +
 + x1*x9 + x1*St + x2*x13 + x2*St + x9*St + x12*St + x13*St

28

Besides the intercept and terms corresponding to six predictors, all the other terms are interactions of
the predictors. Its coefficients are given in Appendix A as well. Figure 22 presents the predicted and
training values for all 300 training records (data points). Figure 23 shows a global image of the
model's generalization efficiency using the 60 data points.

Figure 22. Predicted versus real values for the training

data set

Figure 23. Predicted versus real values for the test data

set

Usually, the training and test process results can be characterized by statistics, allowing the ML
models constructed using the same data set to be compared. The statistics given in Table 22 for
different ML models are the Root mean squared error (RMSE), R-squared, and Mean absolute error
(MAE) values (see [77]).

 Statistics
SW Linear
Regression

SVM
Regression 1

SVM
Regression 2

RNN1 RNN2

Training results

RMSE 52.045 34.93 46.903 41.135 6.375

R-Squared 0.98 0.99 0.98 0.99 1.

MAE 37.42 28.324 31.44 19.132 3.9465

Test results

RMSE 91.091 52.108 86.383 99.206 34.385

R-Squared 0.97 0.99 0.98 0.97 1.

MAE 66.667 43.38 66.255 67.875 19.829

Model size 22 kB 16 kB 40 kB 8 kB 1 MB

Table 22. Statistics of the training and test process results and model size for different ML models.

 Let's notice the statistics characterizing the Step-Wise Linear Regression model presented in
this sub-section, given in the column SW Linear Regression. These will allow us to ascertain the
superiority of the next proposed ML models. Besides the first column, Table 22 also presents the
statistics of the four trained and tested ML models described in the next subsections. The model size
is also given.

 Although the regression model has good predictions for most specimens, it does not give good
predictions for those with a small stress range; their behavior is not accurately "learned." Figures 22
and 23 show certain data points for which the predicted Stress value is negative. There are ten such
data points, which we shall call critical, corresponding to the specimens whose Stress range is very
narrow. These bad predictions are given in Table 23.

29

Stress True value 90.999 94.498 97.997 101.5 105. 67.043 69.621 72.2 74.779 77.357

Stress Predicted
value -46.32 -23.93 -29.72 -18.4 -27.3 -83.92 -118.7 -102. -121.2 -129.2

Table 23. The set of the worst predictions made by the SW Linear Regression Model.

This fact led to investigating nonparametric ML models capable of overpassing this drawback.

Remark 2: Besides ameliorating the statistics, improving the critical data points' predictions was
challenging for the new ML models. The following subsections present only models with
better prediction capabilities, including the critical data points.

4.2.2 Support Vector Machine Models

 Support Vector Machine generated good ML models for our problem. Out of the SVM models
constructed in our work, we present, in the sequel, only two SVM models responding to our
objectives. The first SVM Model, called SVM Regression 1, has a cubic Kernel function and a set
of intern Hyperparameters (as defined within MATLAB system – see [88]): PolynomialOrder,
Standardize, KernelScale, BoxConstraint, Epsilon. Appendix A gives details concerning the
Hyperparameters of the SVM Regression 1.

This model was trained and tested using the Regression Learner application (see [88]), which

led to the results presented in Table 22, column SVM Regression 1. The RMSE values are smaller
than those of the SW linear Regression model, proving that the SVM works better. Figures 24 and
25 illustrate this statement if compared to Figures 22 and 23.

Figure 24. Predicted versus real values for the training data set

- SVM Regression 1

Figure 25. Predicted versus real values for the test

data set - SVM Regression 1

The predictions for the critical data points are given in Table 24. Although they are not very good,
they are better than those in Table 23, at least because they are positive.

Stress True value 90.999 94.498 97.997 101.5 105. 67.043 69.621 72.2 74.779 77.357

Stress Predicted
value 47.679 35.616 39.292 42.684 34.877 82.007 89.711 81.055 81.242 56.943

Table 24. The set of the critical predictions made by the SVM Model 1.

30

We also constructed another SVM model that predicts very well the critical data points, whose
statistics are given in a column called SVM Regression 2. The Hyperparameters' Model is the
following:

Preset: Optimisable SVM,
Kernel function: Quadratic
Kernel scale: Automatic.

The training process uses Bayesian optimization to optimize the combination of hyperparameters.

 Table 25 shows excellent predictions for the critical data points, but the statistics corresponding
to this new SVM model are inferior to those of the SVM Regression 1.

Stress True value 90.999 94.498 97.997 101.5 105. 67.043 69.621 72.2 74.779 77.357

Stress Predicted
value 93.074 95.691 100.18 105.26 110.17 68.82 71.944 74.032 77.312 80.144

Table 25. The set of the critical predictions made by the SVM Model 2.

Moreover, the new model size, 40 kB, is larger than the first. In conclusion, owing to most of its
characteristics, the SVM Regression 1 model can be considered better than the second one.

4.2.3 Regression Neural Network Models

 This subsection presents two other nonparametric ML models using Regression Neural
Networks. The first one uses a Narrow Neural Network in MATLAB system terminology. Its statistics
are shown in column RNN 1 of Table 22.

 Details concerning the model RNN 1 are given in Appendix A. The hyperparameters are
optimized using heuristic procedures. The RMSE and MAE values are better than the previous models
in Table 22, showing better predicting accuracy. Moreover, the model's size is the smallest of all
presented ML models, having 8 kB.

The predicted Stress values for the critical data points are very good, like those presented in Table 25,
proving that this problem is also solved.

The more accurate prediction is obtained using another Regression NN, the RNN 2 model, whose
statistics are displayed in the last column of Table 22. Details concerning the model RNN 2 are given
in Appendix A. It is an RNN with 3 layers whose hyperparameters are found using Bayesian
optimization.

Table 26 shows that the predictions for the critical data points are very good, the best in comparison
with the previous models.

Stress True value 90.999 94.498 97.997 101.5 105. 67.043 69.621 72.2 74.779 77.357

Stress Predicted
value 92.233 96.111 102.73 107.33 113.38 67.583 70.387 73.247 76.896 80.282

Table 26. The set of the critical predictions made by the RNN 2.

The price to pay for the very good accuracy of RNN 2 is the larger size of the model, which is 1 MB.

31

Figure 26. Predicted versus real values - the training of RNN2

Figure 27. Predicted versus real values - the test of

RNN2

Figures 26 and 27 show the efficiency of the training and test processes, respectively, and prove that
RNN2 is the more accurate ML model for the given data set. According to how the ML model is used,
RNN1 can replace RNN2 and be a good solution for our prediction problem due to its small model
size and good accuracy.

10. 5. Forecasting New Stratification Combinations
 This section will present how to exploit the ML models presented in Section 4, that is, to
replicate and predict the behavior of carbon fiber-epoxy composites for different orientations,
including novel stratification combinations.

5.1 Stress-strain predictions for new combinations

 So far, the generalization accuracy of ML models has been tested using the testing datasets
reserved for this objective. The testing dataset comes from the same initial traction tests; they have
the same real physical support. The generalization power of the ML model would be proven for data
points that the model has never "seen"; that is, they belong neither to the training data nor the test
data.

The RNN2 model was used as the most performant ML model for stress prediction in our tests.

 This subsection considers the case when a new combination has the same structure as one that
already contributed to the ML model construction, differing from this in only a few layer orientations.
For example, we can generate novel stratification combinations derived from the S8's pattern as
"neighbors" of this one: the middle sequence 45/45 is replaced by /. The new pattern, denoted
Snew, is given below:

 Snew = [0/45/0/90/0/-45/0///0/-45/0/90/0/45/0].

Under this hypothesis, the ML model can cover and predict the new combination's behavior.

 Four values (denoted) have been considered that generated the four stratifications presented
below for the composite materials. Figure 50 presents the predicted and real Stress values for =45
and, for comparison, the predicted and simulated Stress values for =40. The blue curve is shorter
because it stops at the beginning of the damaged zone; the Digimat VA simulation program can
determine the latter. Currently, the predictions do not consider the damaged zones.

32

Figure 51. Predicted and real/simulated Stress values for =45 and =40.

Figure 51 presents the predicted and simulated Stress values for =20 and, for comparison, =30.
The continuous blue and red curves are shorter because they stop at the beginning of the damaged
zone.

Figure 52. Predicted and simulated Stress values for =20 and =30.

Figures 51 and 52 involve the following remark.

Remark 3. Two aspects can be stated:
 The predictions made by the ML model are very good inside the considered elasticity

zones.
 Predictions give more significant errors at the end of the elasticity zones while

remaining within acceptable limits.

 Beyond the opportunity to compare predictions to real/simulated values, these examples based
on the Snew pattern suggest how to solve a possible peculiar problem that seeks the most resistant
stratification having a given pattern.

33

5.1 Stress-strain predictions for new random combinations

 In this part of our work, we considered specimens with randomly generated layer orientations,
which, in other words, did not contribute to the dataset used to construct the ML model. Then, we
compared the predictions for these specimens made by the ML model with DIGIMAT simulation
results. Only four specimens with randomly generated combinations are considered to make this
presentation easy to follow. To remain inside the ML model's generalization area, we first chose four
base specimens submitted to tensile tests, PAT2, PAT6, PAT9, and PAT11, that contributed to the
dataset used to train the ML model. They have different behaviors in the space Strain ̶ Stress. Each
layer orientation of these specimens was modified independently using a uniformly distributed
perturbation in the range [-4°, +4°]. The resulting specimens with randomly generated orientations
are NEW2, NEW6, NEW9, and NEW11, which are quite different from the initial ones but remain in
the model representation area. For example, Figure 53bis shows the sixteen orientation values of
NEW2 and base specimen PAT2.

Figure 53bis. Layer orientations of NEW2 and PAT2

Table A1 in APPENDIX B gives the layer orientations for all the base and perturbated specimens and
the difference between them (DIFF2, DIFF6, DIFF9, DIFF11). Because the base specimens
contributed to the dataset used to train and test the ML model, their stress predictions given strain
values are already accurate. The accuracy of the stress prediction must be verified for the new
specimens by comparing them with the values given by the DIGIMAT simulations.

Figure 5.3 presents all the curves obtained through simulation and prediction and ascertains the very
good prediction accuracy of the ML model made for the four new specimens. The pairs of curves
having the same color prove that there is a small prediction error for all strain values.

34

Figure 53. Comparison between the predicted and DIGIMAT values for the four randomly
generated specimens.

To zoom in on the prediction error, Figure 54 shows the prediction relative error in a certain number
of points situated in the Strain range considered in Figure 53.

Figure 54. Relative prediction errors for the four randomly generated specimens.

The following equation gives the prediction relative error:

predicted stress value - simulated stress value
prediction relative error =

simulated stress value

35

The relative error is placed in the interval [-0.04, 0.06], which means the prediction accuracy is greatly
satisfactory. The proposed ML model has a good generalization power if it is appropriately employed,
that is,

 the specimens are inside the ML model representation domain and

 the strain values are inside the range corresponding to the elasticity zone.

Remark 4. Generally, there is no procedure to verify if the first constraint is rigorously met.
Depending on the dataset and practical application, the user can consider a certain ML
model representation domain a priori and estimate if this constraint is met. After that,
reliable predictions can be made.

APPENDIX A

Details concerning the SW Linear Regression model

The regression model is obtained using the step-wise function:

model stepwise(T)

*** This part is already presented in PART 1 ***

Details concerning the SVM Regression 1

Hyperparameters Model:
Preset Quadratic SVM
Kernel function: Cubic
Kernel scale 3.001
Box constraint: Automatic
Epsilon Auto
Standardisation data: Yes
Optimiser: Not applicable

Details concerning model RNN 1
Hyperparameters Model:

Preset Narrow NN
Number of fully connected layers 1
First Layer size 10
Activation ReLU
Iteration limit 1000
Regularisation strength (lambda) 0
Standardisation data: Yes
Optimiser: Not Applicable

Details concerning model RNN 2
Preset Optimizable NN
Iteration limit: 1000
Optimiser: Bayesian optimisation

The training of RNN 2 is made using the fitrnet function:
RegNN = fitrnet(...

36

 predictors, ...
 response, ...
 'LayerSizes', [166 280 298], ...
 'Activations', 'relu', ...
 'Lambda', 3.6315e-08, ...
 'IterationLimit', 1000, ...
 'Standardise', true);

Figure 5.1 Prediction versus simulation for the new pattern (a)

Figure 5.2 Prediction versus simulation for the new pattern (b)

37

Figure 5.3 Prediction versus simulation for the new pattern (c)

APPENDIX B

 ang1 ang2 ang3 ang4 ang5 ang6 ang7 ang8
 _____ ______ ______ ______ _____ ______ ______ ______

 PAT2 20.00 -20.00 20.00 -20.00 20.00 -20.00 20.00 -20.00
 NEW2 16.80 -20.05 19.67 -22.92 16.85 -22.06 17.68 -16.53
 DIFF2 -3.20 -0.05 -0.33 -2.92 -3.15 -2.06 -2.32 3.47
 PAT6 70.00 -70.00 70.00 -70.00 70.00 -70.00 70.00 -70.00
 NEW6 71.47 -69.27 68.30 -70.32 73.18 -71.33 67.00 -68.95
 DIFF6 1.47 0.73 -1.70 -0.32 3.18 -1.33 -3.00 1.05
 PAT9 45.00 0.00 -45.00 90.00 45.00 0.00 -45.00 90.00
 NEW9 46.59 3.31 -42.30 88.52 48.57 -1.31 -44.54 88.57
 DIFF9 1.59 3.31 2.70 -1.48 3.57 -1.31 0.46 -1.43
 PAT11 0.00 30.00 0.00 90.00 0.00 -30.00 0.00 30.00
 NEW11 -3.49 26.87 -0.14 89.83 2.48 -33.05 3.61 32.53
 DIFF11 -3.49 -3.13 -0.14 -0.17 2.48 -3.05 3.61 2.53

 ang9 ang10 ang11 ang12 ang13 ang14 ang15 ang16
 _____ ______ ______ ______ _____ ______ _____ ______

 PAT2 20.00 -20.00 20.00 -20.00 20.00 -20.00 20.00 -20.00
 NEW2 23.49 -20.79 16.26 -21.91 16.71 -22.76 17.14 -22.26
 DIFF2 3.49 -0.79 -3.74 -1.91 -3.29 -2.76 -2.86 -2.26
 PAT6 70.00 -70.00 70.00 -70.00 70.00 -70.00 70.00 -70.00
 NEW6 69.55 -73.38 67.92 -67.99 73.58 -72.32 69.08 -70.79
 DIFF6 -0.45 -3.38 -2.08 2.01 3.58 -2.32 -0.92 -0.79
 PAT9 90.00 -45.00 0.00 45.00 90.00 -45.00 0.00 45.00
 NEW9 90.23 -48.59 3.12 45.28 92.95 -41.92 -1.90 42.29
 DIFF9 0.23 -3.59 3.12 0.28 2.95 3.08 -1.90 -2.71
 PAT11 30.00 0.00 -30.00 0.00 90.00 0.00 30.00 0.00
 NEW11 29.95 1.22 -28.86 -0.13 92.30 -0.28 26.92 -0.82
 DIFF11 -0.05 1.22 1.14 -0.13 2.30 -0.28 -3.08 -0.82

Table A.1 The layers' orientations of the basic and new random specimens and their differences.

