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Machine Learning models' construction for the load behavior of 
composite materials in the undamaged zone. 

Research Report of UGAL for the project Leap-Re D3T4H2S 
 
Contract: 11/2024 din 21.03.2024 
Research Study, 2024 

hƩps://www.d3t4h2s.ugal.ro/index.php  

This study details the research activities conducted by the UGAL research team between Mars 

21st, 2024, and December 31st, 2024. The archive WorkMLModels.zip associated with this report 

contains the scripts and files supporting the research presented; they can also be used to follow this 

report easily. 

As a partner in this project, UGAL is mainly responsible for two types of tasks: 

1. The first task involves constructing Machine Learning (ML) models to predict: 

- The thermo-mechanical behavior of the composite materials used for producing hydrogen 

tanks (material responses). 

- The tank response: in this case, we use a "full model" of the tank. 

(2) The second task will partially cover the optimization task of implementing the Expert tool 

for real-time evaluation and optimization of hydrogen storage vessels. Because optimization 

is generally a complex task, we have to prepare theoretical and practical "tools," especially in 

this scientific context, even though optimization will be one of the final stages of our project. 

PART I 

Machine Learning Models for the TracƟon Test 

This part presents a prospective work concerning the predictions we can make using ML models 

and data collected from specific material tests (traction tests) or simulations. At the same time, we 

tested the programming resources and toolboxes that we relied on in our implementations. The 

informatic resources are provided by the MATLAB 2024 platform and endowed with appropriate 

toolboxes. 

1. General Objective and Available Data 

Complex mechanical tests concerning the materials envisaged to be used for the hydrogen tanks' 
transportation were carried out by our colleagues from S VERTICAL (Mourad NACHTANE) and 
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ENSTA Bretagne (Prof. Mostapha TARFAOUI). The tensile test, one of the most often used 
mechanical characterization, was made on an INSTRON 5969 test machine, comprising two tensile 
bits between which the specimen is placed. Some partial test data was put at our disposal in our 
attempt to generate a Machine Learning (ML) model for stress-strain dependence during the tensile 
test of different specimens. 

The data collected refers to 12 specimens loaded within different stress and strain ranges. Linear 

segments approximated the results, as shown in Figure 1. 

 

Figure 1. The stress-strain dependence during the tensile test of the twelve specimens. 

The table below shows the min and max limits of the Stress and Strain parameters for the twelve 
specimens. 

 Strain (min) Strain (max) Stress (min) Stress (max) 
S-1 0 0.01587015 0 2064.24019 
S-2 0 0.01874477 0 1540.16043 
S-3 0 0.01705347 0 593.258184 
S-4 0 0.02798728 0 192.457154 
S-5 0 0.00981914 0 101.786008 
S-6 0 0.00803761 0 77.3136431 
S-7 0 0.00709987 0 63.9780266 
S-8 0 0.01537992 0 1121.76279 
S-9 0 0.01478241 0 680.072911 

S-10 0 0.01536462 0 499.329696 
S-11 0 0.01499824 0 1327.03122 
S-12 0 0.0146055 0 540.079359 

Table 1. Limits of Strain and Stress Values 
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Every specimen is composed of 16 composite layers having different orientations. The 

following sequence could characterize a specimen state during the tensile test: 

 1 2 16,  , , ,  ,  Strain Stress     (**) 

Each of the twelve tested specimens has a specific angle combination , 1, ,16i i    that will be 

called a pattern. 

 

Table 2. The patterns of the specimens. 

For each specimen, the tensile test collected pairs of values Stress – Strain that can placed on a 
specific straight line whose equation is given in the table below. 

Specimen EquaƟon 
S-1  F1(x)= 130393x + 4e-07 
S-2  F2(x) = 81800x + 29,48 
S-3  F3(x) =  46733x + 0,5042 
S-4  F4(x) = 17588x + 0,00055 
S-5  F5(x) = 10691x + 0,0192 
S-6  F6(x) = 9624,4x 
S-7  F7(x) = 9132x+0.0264 
S-8  F8(x) = 76670x + 0,054 
S-9  F9(x) = 50158x + 0,1227 

S-10  F10(x) = 36049x + 0,4325 
S-11  F11(x) = 90481x + 0,0401 
S-12  F12(x) = 41686x 

Table 3. The linear functions where the measurements are placed. 
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2. The Speciϐic Objectives of this Research 

As mentioned, the main objective is to construct an ML model to apprehend all the 

measurements described before and predict the Stress value for any pattern and Strain value. Our 

work's specific objectives are: 

1. Generate a dataset big enough to construct the ML model to generalize the response for any 

pattern and adequate Strain value. 

2. Construct a parametric model (e.g., the multiple linear regression) that is easy to understand 

and apply and can be used for comparison with the following models. 

3. Construct some nonparametric models (SVM, decision trees, Gaussian process regression, 

and neural networks), analyze their accuracy, and compare them to the parametric model. 

4. Choose the more accurate parametric model that could be used in further research. 

3. A dataset generation for constructing and testing different ML 

models. 

We used three ideas to yield a dataset that can be used to train and test the ML models. 

 A uniformly distributed noise perturbs the patterns; that is, it affects each orientation angle 

with a value belonging to [-d, d] (e.g., d=2 grads). This perturbation models the imprecision 

in achieving the layer's orientation but also diversifies the orientation values to make the 

generalization possible. 

 We consider M (e.g., M=30) data points generated by M Strain values for each specimen. The 

corresponding M measured Stress values are obtained using the corresponding linear function 

iF . 

k kStress (Strain )  k=1, ,M; i=1, ,12iF   .  

 Each time a data point is generated, the pattern is perturbated.  

Finally, our dataset would have 12*M data points. 

Remark: We have a data-generating process, using a probability distribution, that meats the 

independent and identically distribution assumptions. The training and test sets will be generated 

independently using the same probability distribution.  
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3.1 Generation of the dataset 

The program H2Data2 constructs each data point's pattern, functions, strain, and stress values. It 

also generates the design matrix called BigData. 

The vector PATTERN contains the layers' orientations for each specimen. 

PATTERN=zeros(12,16); 
PATTERN(1,:)=[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]; 
PATTERN(2,:)=[20. -20. 20. -20. 20. -20. 20. -20. 20. -20. 20. -20. 20. -20. 20. -20.]; 
PATTERN(3,:)=[30. -30. 30. -30. 30. -30. 30. -30. 30. -30. 30. -30. 30. -30. 30. -30.]; 
PATTERN(4,:)=[45. -45. 45. -45. 45. -45. 45. -45. 45. -45. 45. -45. 45. -45. 45. -45.]; 
PATTERN(5,:)=[60. -60. 60. -60. 60. -60. 60. -60. 60. -60. 60. -60. 60. -60. 60. -60.]; 
PATTERN(6,:)=[70. -70. 70. -70. 70. -70. 70. -70. 70. -70. 70. -70. 70. -70. 70. -70.]; 
PATTERN(7,:)=[90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90.]; 
PATTERN(8,:)=[0. 45. 0. 90. 0. -45. 0. 45. 45. 0. -45. 0. 90. 0. 45. 0.]; 
PATTERN(9,:)=[45. 0. -45. 90. 45. 0. -45. 90. 90. -45. 0. 45. 90. -45. 0. 45.]; 
PATTERN(10,:)=[45. -45. 0. 45. -45. 90. 45. -45. -45. 45. 90. -45. 45. 0. -45. 45.]; 
PATTERN(11,:)=[0. 30. 0. 90. 0. -30. 0. 30. 30. 0. -30. 0. 90. 0. 30. 0.]; 
PATTERN(12,:)=[60. 0. -60. 90. 60. 0. -60. 90. 90. -60. 0. 60. 90. -60. 0. 60.]; 
 
Implementation: 
- F: array of function handles 
- strain: matrix with the values of the strain for each specimen and M=30 abscissae 
-nc=18; 
 
- BigData=zeros(12*M,nc);  % matrix with 360 data points 
 
- PAT=PATTERN(Sk,:)+ random('unif',-delta,delta,[1,16]); 
- BigData(i,:)=[PAT, strain(Sk,j), F{Sk}(strain(Sk,j))]; 
 
- save('WS_data360',' BigData',' F',' strain',' delta',' M'); 
 
Data point #220 would be, for example, the following [18,1] vector  
 
[  1.391       45.331      0.34471     91.703      0.30031       -46.96       1.2375       45.435        44.92      
0.92624   -45.968 -0.075962      88.909      -1.8056       43.677     -0.96621    0.0051266       393.11]. 

3.2 Construction of the tables for training and testing 

The program H2Construction constructs the tables for training and testing. It splits the 

lines of the BigData matrix into two matrices, Dtrain and Dtest. 

Each specimen generated 30 (M) data points. The first 25 and last 5 lines will be added to the 

DTrain and DTest matrices, respectively. The two matrices will be converted into TableTest and 

TableTest, respectively. 

nTableTrain DTrai  
tTableTest DTes  
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4. Construction of Step Vise models using datasets 

The multiple linear regression models we considered also included nonlinear terms (products 

of predictors) and used a step-wise technique to construct those models. The model maintains linearity 

in terms of its coefficients. 

1. Adding x1, FStat = 227.8572, pValue = 1.239117e-38 
2. Adding St, FStat = 216.2564, pValue = 3.720389e-37 
3. Adding x1:St, FStat = 367.5712, pValue = 8.032568e-54 
4. Adding x12, FStat = 53.9613, pValue = 2.01116e-12 
5. Adding x12:St, FStat = 95.8075, pValue = 9.11615e-20 
6. Adding x13, FStat = 236.636, pValue = 1.49516e-39 
7. Adding x13:St, FStat = 148.9911, pValue = 5.765152e-28 
8. Adding x12:x13, FStat = 72.9692, pValue = 7.48834e-16 
9. Adding x9, FStat = 65.4199, pValue = 1.66602e-14 
10. Adding x9:St, FStat = 36.892, pValue = 3.92447e-09 
11. Adding x2, FStat = 16.1382, pValue = 7.52075e-05 
12. Adding x1:x9, FStat = 14.5624, pValue = 0.000166095 
13. Adding x1:x12, FStat = 5.6396, pValue = 0.018218 
14. Adding x2:St, FStat = 5.2191, pValue = 0.023075 
15. Removing x12:x13, FStat = 0.24892, pValue = 0.61822 
 
Linear regression model: 
    Ss ~ 1 + x1*x9 + x1*St + x2*x13 + x2*St + x9*St + x12*St + x13*St 
 
Estimated Coefficients: 
                    Estimate        SE        tStat       pValue    
                   __________    ________    _______    ___________ 
 
    (Intercept)        66.289      16.348     4.0548     6.4742e-05 
    x1                -1.0564     0.90931    -1.1618        0.24629 
    x2                  5.299      1.5056     3.5196     0.00050263 
    x9                -2.1988     0.58916    -3.7322       0.000229 
    x12               -1.5438     0.30825    -5.0083     9.6246e-07 
    x13               0.42446       0.401     1.0585        0.29071 
    St             1.2418e+05      1901.7       65.3    7.0906e-174 
    x1:x9             0.04764    0.012162     3.9171     0.00011217 
    x1:St             -1320.7      54.246    -24.346     1.1118e-71 
    x2:x13          -0.065347     0.01489    -4.3885      1.607e-05 
    x2:St             -176.64      54.038    -3.2687      0.0012122 
    x9:St             -170.77      29.761    -5.7382     2.4366e-08 
    x12:St             666.06       38.01     17.523     3.3209e-47 
    x13:St            -307.24      37.886    -8.1096     1.5046e-14 
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Figure 2. Linear regression model- Response versus true values 

 

Figure 22. Predicted versus real values for the training 

data set 

 

Figure 23. Predicted versus real values for the test data 

set 

 

4.1 Comparison of the true stress values to the predicted values 
 
                    Stress       uPred 
            1       1793.4       1771.2 



8 
 

 

            2       1862.4       1812.9 
            3       1931.4       1963.1 
            4       2000.4       1966.8 
            5       2069.4       2062.7 
            6       1358.4       1234.1 
            7       1409.5       1256.4 
            8       1460.6       1339.7 
            9       1511.7       1409.9 
           10       1562.8       1472.7 
           11        691.2       765.74 
           12       717.77          837 
           13       744.33        830.2 
           14        770.9       881.83 
           15       797.46       972.66 
           16       426.61       455.18 
           17       443.02       583.99 
           18       459.42       525.39 
           19       475.83        588.2 
           20       492.24       567.19 
           21       90.999      -46.329 
           22       94.498      -23.934 
           23       97.997      -29.726 
           24        101.5      -18.482 
           25          105       -27.37 
           26       67.043      -83.925 
           27       69.621      -118.72 
           28         72.2      -102.75 
           29       74.779      -121.22 
           30       77.357      -129.23 
           31       56.218       27.051 
           32       58.379       57.544 
           33        60.54       60.965 
           34       62.701       44.883 
           35       64.862       68.942 
           36         1022       1067.1 
           37       1061.3       1105.3 
           38       1100.6       1182.4 
           39       1139.9       1202.6 
           40       1179.2       1205.6 
           41       642.72       608.92 
           42       667.43       655.97 
           43       692.15       655.66 
           44       716.86        755.1 
           45       741.58       713.76 
           46       480.46       486.48 
           47       498.92       462.78 
           48       517.39       531.04 
           49       535.85       565.14 
           50       554.31       608.58 
           51       1176.2       1176.3 
           52       1221.4       1169.8 
           53       1266.6       1207.7 
           54       1311.9       1219.9 
           55       1357.1       1284.2 
           56       527.67       535.89 
           57       547.96       557.76 
           58       568.26       546.71 
           59       588.55       571.09 
           60       608.84       620.91 
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Figure 3. Stress-predicted values versus the true measured values. 

 

4.2 Comparison between real and predicted stress values for the 
specimen #7 and all the 30 strain's values 
 
     Strain       Stress      uPred 
   0.00023666       2.1876       7.5603 
   0.00047332       4.3488       9.0623 
   0.00070999         6.51       10.564 
   0.00094665       8.6712       12.066 
    0.0011833       10.832       13.568 
      0.00142       12.994        15.07 
    0.0016566       15.155       16.572 
    0.0018933       17.316       18.074 
      0.00213       19.477       19.576 
    0.0023666       21.638       21.078 
    0.0026033         23.8        22.58 
    0.0028399       25.961       24.082 
    0.0030766       28.122       25.584 
    0.0033133       30.283       27.085 
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    0.0035499       32.444       28.587 
    0.0037866       34.606       30.089 
    0.0040233       36.767       31.591 
    0.0042599       38.928       33.093 
    0.0044966       41.089       34.595 
    0.0047332        43.25       36.097 
    0.0049699       45.412       37.599 
    0.0052066       47.573       39.101 
    0.0054432       49.734       40.603 
    0.0056799       51.895       42.105 
    0.0059166       54.056       43.607 
    0.0061532       56.218       45.109 
    0.0063899       58.379       46.611 
    0.0066265        60.54       48.113 
    0.0068632       62.701       49.614 
    0.0070999       64.862       51.116 

Figure 4 shows a deviated linear placement. 

 

 

Fig 4. Comparison between real (blue) and predicted stress values(red) for specimen #7 and all the 

30 strain values. 
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5. Models based on Support Vector Machines 

5.1 First SVM model 

Program: H2_modelSVM4 

The training parameters are: 

Standardized data=yes, Kernel function= Quadratic, Kernel scale= 

Automatic, Box constraint= Automatic, Epsilon= Auto 

****************************************** 
    Nr      LM       RealValue      SVM4   
    __    _______    _________    _______ 
     1       1732     1793.4       1684.9 
     2     1860.7     1862.4       1815.7 
     3     1898.5     1931.4       1916.3 
     4     2020.2     2000.4       1946.3 
     5       2053     2069.4         1966 
     6     1280.4     1358.4       1237.9 
     7     1325.2     1409.5       1259.7 
     8     1350.6     1460.6       1291.7 
     9     1390.2     1511.7       1268.4 
    10     1453.7     1562.8       1416.4 
    11     776.57      691.2       782.42 
    12     830.27     717.77       771.33 
    13     817.05     744.33       794.64 
    14     924.42      770.9       969.99 
    15     862.47     797.46       816.63 
    16     590.41     426.61       451.63 
    17     458.26     443.02       249.64 
    18     604.86     459.42       372.73 
    19     560.09     475.83       485.59 
    20     585.09     492.24       325.44 
    21    -37.373     90.999        39.86 
    22     -34.88     94.498       39.649 
    23    -32.447     97.997      -14.256 
    24    -52.129      101.5      -48.742 
    25    -37.333        105      -24.972 
    26    -103.89     67.043      -14.329 
    27    -114.62     69.621      -68.909 
    28    -120.05       72.2      -42.349 
    29    -124.01     74.779      -50.366 
    30    -120.17     77.357      -73.159 
    31     56.668     56.218       40.865 
    32     57.595     58.379       32.068 
    33      50.58      60.54       17.733 
    34     79.963     62.701       57.463 
    35     70.683     64.862      -2.7203 
    36     1034.2       1022       1009.6 
    37     1097.1     1061.3       1047.3 
    38     1121.6     1100.6       1086.4 
    39     1190.6     1139.9       1123.2 
    40     1244.3     1179.2       1149.4 
    41      638.1     642.72        612.3 
    42     668.63     667.43       589.98 
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    43     692.83     692.15       529.37 
    44     742.13     716.86       648.78 
    45     711.31     741.58       522.45 
    46     465.52     480.46       567.94 
    47     468.47     498.92       493.39 
    48     530.87     517.39       464.42 
    49      560.6     535.85       523.57 
    50     541.03     554.31       580.87 
    51     1101.1     1176.2         1108 
    52     1174.1     1221.4       1208.3 
    53     1182.4     1266.6       1204.2 
    54     1291.1     1311.9         1281 
    55     1271.3     1357.1       1275.3 
    56     500.97     527.67        506.3 
    57     550.47     547.96       629.11 
    58     576.83     568.26       602.14 
    59     548.51     588.55        617.1 
    60     576.88     608.84       679.57 
mdlLoss= 
        11770 
RMSE (root-mean-square error) Validation=       70.507 
RMSE test =            97.712 
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Figure 5. SVM4 model- Response versus true values  

 
>> H2_useSVM4: for specimen #7 
    strain    RealStress     SVM4  
    ______    __________    ______ 
    0.001       9.1584      17.452 
    0.002        18.29      23.366 
    0.003       27.422       27.53 
    0.004       36.554      29.945 
    0.005       45.686      30.611 
    0.006       54.818      29.527 
    0.007        63.95      26.694 
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SVM4 Model with Optimization of Hyperparameters 
 
*************************************** 
|=================================================================================================================================================================| 
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |      Epsilon | KernelFuncti-| PolynomialOr-|  Standardize | 
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              | on           | der          |              | 
|=================================================================================================================================================================| 
|    1 | Best   |      11.761 |     0.24632 |      11.761 |      11.761 |       50.879 |            - |       5506.1 |       linear |            - |         true | 
|    2 | Best   |      11.269 |    0.057955 |      11.269 |      11.306 |    0.0010394 |            - |        55.75 |       linear |            - |        false | 
|    3 | Best   |      11.101 |     0.18005 |      11.101 |      11.101 |        3.707 |            - |       1.7182 |       linear |            - |        false | 
|    4 | Accept |      11.761 |    0.090178 |      11.101 |      11.102 |        22.21 |       322.44 |       2744.3 |     gaussian |            - |        false | 
|    5 | Best   |      11.087 |    0.056985 |      11.087 |      11.087 |     0.051545 |            - |      0.32655 |       linear |            - |        false | 
|    6 | Accept |      11.316 |      8.6758 |      11.087 |      11.087 |    0.0017306 |            - |      0.38008 |   polynomial |            2 |        false | 
|    7 | Accept |      11.761 |    0.055333 |      11.087 |      11.087 |        22.54 |      0.16624 |       2799.6 |     gaussian |            - |        false | 
|    8 | Accept |      11.103 |    0.077886 |      11.087 |      11.087 |    0.0094022 |            - |      0.55794 |       linear |            - |        false | 
|    9 | Accept |      11.135 |      14.203 |      11.087 |      11.088 |       925.29 |            - |       0.3297 |       linear |            - |        false | 
|   10 | Best   |      11.076 |      0.0685 |      11.076 |      11.077 |      0.36097 |            - |        0.329 |       linear |            - |        false | 
|   11 | Accept |      11.096 |     0.10543 |      11.076 |      11.085 |       1.1846 |            - |      0.33354 |       linear |            - |        false | 
|   12 | Best   |      11.075 |    0.056443 |      11.075 |      11.082 |      0.24861 |            - |      0.32781 |       linear |            - |        false | 
|   13 | Best   |      11.074 |    0.057453 |      11.074 |      11.081 |      0.22007 |            - |      0.32747 |       linear |            - |        false | 
|   14 | Accept |      11.761 |    0.051278 |      11.074 |      11.081 |       0.0629 |            - |        32063 |       linear |            - |        false | 
|   15 | Accept |      11.835 |    0.068064 |      11.074 |      11.076 |       26.375 |    0.0010591 |      0.36085 |     gaussian |            - |        false | 
|   16 | Best   |      11.071 |    0.049445 |      11.071 |      11.071 |      0.11624 |            - |        1.568 |       linear |            - |        false | 
|   17 | Accept |      11.078 |    0.055216 |      11.071 |      11.073 |      0.17758 |            - |      0.90556 |       linear |            - |        false | 
|   18 | Accept |      11.077 |    0.054596 |      11.071 |      11.073 |      0.13152 |            - |       5.2493 |       linear |            - |        false | 
|   19 | Accept |      11.086 |    0.050962 |      11.071 |      11.075 |     0.056664 |            - |       2.6373 |       linear |            - |        false | 
|   20 | Accept |      11.074 |    0.068646 |      11.071 |      11.073 |      0.27179 |            - |       2.7135 |       linear |            - |        false | 
|=================================================================================================================================================================| 
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |      Epsilon | KernelFuncti-| PolynomialOr-|  Standardize | 
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              | on           | der          |              | 
|=================================================================================================================================================================| 
|   21 | Accept |      11.073 |    0.060873 |      11.071 |      11.073 |      0.25692 |            - |       2.5645 |       linear |            - |        false | 
|   22 | Accept |      11.077 |    0.074086 |      11.071 |      11.073 |      0.57366 |            - |       7.8012 |       linear |            - |        false | 
|   23 | Accept |      11.072 |    0.065127 |      11.071 |      11.072 |      0.27767 |            - |       3.2501 |       linear |            - |        false | 
|   24 | Accept |      28.526 |      14.596 |      11.071 |      11.075 |       956.21 |            - |      0.71929 |   polynomial |            3 |        false | 
|   25 | Best   |       10.54 |    0.068093 |       10.54 |      10.541 |       58.131 |            - |      0.32647 |       linear |            - |         true | 
|   26 | Accept |      11.835 |    0.073609 |       10.54 |      10.541 |       35.687 |    0.0015134 |      0.52674 |     gaussian |            - |         true | 
|   27 | Accept |      11.761 |    0.046824 |       10.54 |      10.541 |       31.597 |    0.0064668 |        32451 |     gaussian |            - |         true | 
|   28 | Best   |      7.9513 |      4.5132 |      7.9513 |      7.9515 |       937.68 |            - |      0.45123 |   polynomial |            2 |         true | 
|   29 | Accept |      11.761 |    0.042463 |      7.9513 |      7.9524 |    0.0010158 |            - |        30111 |   polynomial |            2 |         true | 
|   30 | Accept |      11.761 |    0.045145 |      7.9513 |      7.9526 |    0.0010001 |            - |        28809 |   polynomial |            3 |         true | 
 
__________________________________________________________ 

Optimization completed. 
MaxObjectiveEvaluations of 30 reached. 
Total function evaluations: 30 
Total elapsed time: 54.9026 seconds 
Total objective function evaluation time: 43.9151 
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Observed objective function value = 7.9513 
Estimated objective function value = 7.9526 
Function evaluation time = 4.5132 
 
Estimated objective function value = 7.9526 
Estimated function evaluation time = 4.5076 
 
mdlLoss= 8492.6 
    Nr      LM       RealValue      SVM   
    __    _______    _________    _______ 
 
     1       1732     1793.4       1703.7 
     2     1860.7     1862.4       1836.2 
     3     1898.5     1931.4         1851 
     4     2020.2     2000.4       1942.6 
     5       2053     2069.4       1978.7 
     6     1280.4     1358.4       1181.9 
     7     1325.2     1409.5       1319.7 
     8     1350.6     1460.6       1334.2 
     9     1390.2     1511.7       1318.2 
    10     1453.7     1562.8       1405.9 
    11     776.57      691.2       752.59 
    12     830.27     717.77       809.04 
    13     817.05     744.33        821.8 
    14     924.42      770.9       874.66 
    15     862.47     797.46       845.05 
    16     590.41     426.61       456.78 
    17     458.26     443.02       312.86 
    18     604.86     459.42       364.27 
    19     560.09     475.83       311.76 
    20     585.09     492.24       436.92 
    21    -37.373     90.999      -2.4286 
    22     -34.88     94.498      -4.0187 
    23    -32.447     97.997      -69.107 
    24    -52.129      101.5      -109.96 
    25    -37.333        105      -23.563 
    26    -103.89     67.043      -63.279 
    27    -114.62     69.621      -120.44 
    28    -120.05       72.2      -96.765 
    29    -124.01     74.779       -59.83 
    30    -120.17     77.357      -101.09 
    31     56.668     56.218       54.417 
    32     57.595     58.379       59.222 
    33      50.58      60.54        40.54 
    34     79.963     62.701       51.446 
    35     70.683     64.862       48.108 
    36     1034.2       1022       970.44 
    37     1097.1     1061.3       1062.4 
    38     1121.6     1100.6       1055.3 
    39     1190.6     1139.9       1159.2 
    40     1244.3     1179.2       1161.8 
    41      638.1     642.72       637.65 
    42     668.63     667.43       649.23 
    43     692.83     692.15       658.06 
    44     742.13     716.86       689.85 
    45     711.31     741.58       642.64 
    46     465.52     480.46       468.55 
    47     468.47     498.92       454.03 
    48     530.87     517.39       494.98 
    49      560.6     535.85       496.77 
    50     541.03     554.31       524.12 
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    51     1101.1     1176.2         1125 
    52     1174.1     1221.4       1185.4 
    53     1182.4     1266.6       1220.6 
    54     1291.1     1311.9       1282.4 
    55     1271.3     1357.1       1291.5 
    56     500.97     527.67       495.97 
    57     550.47     547.96       533.09 
    58     576.83     568.26       543.67 
    59     548.51     588.55       555.36 
    60     576.88     608.84       579.53 

Remark: A small increase in quality 

 

5.2 SVM with Hyperparameters' Optimization and grade=2 

SVM Model 2 
(Model SVM 22)- 

The model is trained using the MATLAB function fitrsvm as below: 

mdlSVM2=fitrsvm(TableTrain, "Ss", 'Standardize', true,... 
'kernelfunction', 'polynomial', 'PolynomialOrder',2, 
'KernelScale',3.001, 
'BoxConstraint',0.8143 
'Epsilon',4.0715 
'OptimizeHyperparameters',' all'); 
 
mdlLoss= 
       6448.2 
 
    Nr      LM       RealValue     SVM   
    __    _______    _________    ______ 
 
     1       1732     1793.4      1722.4 
     2     1860.7     1862.4        1752 
     3     1898.5     1931.4      1779.1 
     4     2020.2     2000.4      1786.9 
     5       2053     2069.4      1795.6 
     6     1280.4     1358.4      1299.1 
     7     1325.2     1409.5      1325.1 
     8     1350.6     1460.6      1325.9 
     9     1390.2     1511.7        1296 
    10     1453.7     1562.8      1283.2 
    11     776.57      691.2      695.27 
    12     830.27     717.77      749.01 
    13     817.05     744.33      787.79 
    14     924.42      770.9      772.34 
    15     862.47     797.46       754.7 
    16     590.41     426.61      417.99 
    17     458.26     443.02      431.28 
    18     604.86     459.42      438.98 
    19     560.09     475.83      441.98 
    20     585.09     492.24      441.92 
    21    -37.373     90.999      93.074       A SVM model that gives good 
    22     -34.88     94.498      95.691       predictions in this range. 
    23    -32.447     97.997      100.18 
    24    -52.129      101.5      105.26 
    25    -37.333        105      110.17 
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    26    -103.89     67.043       68.82 
    27    -114.62     69.621      71.944 
    28    -120.05       72.2      74.032 
    29    -124.01     74.779      77.312 
    30    -120.17     77.357      80.144 
    31     56.668     56.218      57.801 
    32     57.595     58.379      61.307 
    33      50.58      60.54      63.944 
    34     79.963     62.701      66.879 
    35     70.683     64.862      69.335 
    36     1034.2       1022      986.38 
    37     1097.1     1061.3      1024.8 
    38     1121.6     1100.6      1045.1 
    39     1190.6     1139.9      1055.9 
    40     1244.3     1179.2      1068.4 
    41      638.1     642.72      635.92 
    42     668.63     667.43      647.59 
    43     692.83     692.15      663.69 
    44     742.13     716.86      680.33 
    45     711.31     741.58      688.16 
    46     465.52     480.46      474.78 
    47     468.47     498.92      489.04 
    48     530.87     517.39       499.4 
    49      560.6     535.85      512.94 
    50     541.03     554.31       521.8 
    51     1101.1     1176.2      1146.3 
    52     1174.1     1221.4      1179.7 
    53     1182.4     1266.6      1205.6 
    54     1291.1     1311.9      1224.8 
    55     1271.3     1357.1      1232.6 
    56     500.97     527.67      519.48 
    57     550.47     547.96      543.12 
    58     576.83     568.26      564.46 
    59     548.51     588.55      565.74 
    60     576.88     608.84      581.46 
 
RMSEValid =       5.1788 
RMSETest  =       80.301 
Size: 40kB 
 
>> H2_UseSVM2 
 
  strain   RealStress   SVM2  
    0.001       9.1584      8.1594 
    0.002        18.29      16.018 
    0.003       27.422      25.319 
    0.004       36.554      35.301 
    0.005       45.686      45.576 
    0.006       54.818      56.146 
    0.007        63.95      67.326 
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5.3 SVM Model with cubic Kernel function –(SVM16) 

Non-optimizable version: 
    'KernelFunction', 'polynomial', ... 
    'PolynomialOrder', 3, ... 
    'KernelScale', 3.001, ... 
    'BoxConstraint', Automatic, ... 
    'Epsilon', Auto, ... 
    'Standardize', true); 
 
    Nr      LM       RealValue    SVM16  
    __    _______    _________    ______ 
     1       1732     1793.4      1823.5 
     2     1860.7     1862.4      1915.7 
     3     1898.5     1931.4      1990.9 
     4     2020.2     2000.4      2109.4 
     5       2053     2069.4      2174.2 
     6     1280.4     1358.4      1254.2 
     7     1325.2     1409.5      1329.6 
     8     1350.6     1460.6      1375.3 
     9     1390.2     1511.7      1403.1 
    10     1453.7     1562.8      1450.6 
    11     776.57      691.2      749.72 
    12     830.27     717.77      796.12 
    13     817.05     744.33      835.09 
    14     924.42      770.9      852.53 
    15     862.47     797.46      839.77 
    16     590.41     426.61      392.61 
    17     458.26     443.02      399.61 
    18     604.86     459.42      429.55 
    19     560.09     475.83      428.53 
    20     585.09     492.24      447.42 
    21    -37.373     90.999      47.679 
    22     -34.88     94.498      35.616 
    23    -32.447     97.997      39.292 
    24    -52.129      101.5      42.684 
    25    -37.333        105      34.877 
    26    -103.89     67.043      82.007 
    27    -114.62     69.621      89.711 
    28    -120.05       72.2      81.055 
    29    -124.01     74.779      81.242 
    30    -120.17     77.357      56.943 
    31     56.668     56.218      81.491 
    32     57.595     58.379       84.83 
    33      50.58      60.54      89.598 
    34     79.963     62.701      97.737 
    35     70.683     64.862      93.759 
    36     1034.2       1022      1027.8 
    37     1097.1     1061.3      1100.1 
    38     1121.6     1100.6      1139.1 
    39     1190.6     1139.9      1208.7 
    40     1244.3     1179.2      1234.9 
    41      638.1     642.72      676.06 
    42     668.63     667.43      693.53 
    43     692.83     692.15      719.39 
    44     742.13     716.86      752.67 
    45     711.31     741.58      759.86 
    46     465.52     480.46      498.21 
    47     468.47     498.92      508.85 
    48     530.87     517.39      547.56 
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    49      560.6     535.85      580.99 
    50     541.03     554.31      608.88 
    51     1101.1     1176.2      1136.5 
    52     1174.1     1221.4      1188.4 
    53     1182.4     1266.6      1235.4 
    54     1291.1     1311.9      1304.7 
    55     1271.3     1357.1      1320.7 
    56     500.97     527.67      515.08 
    57     550.47     547.96      556.47 
    58     576.83     568.26      582.27 
    59     548.51     588.55      583.73 
    60     576.88     608.84      615.13 
 
RMSEValid =      34.945 
 
RMSETest =       52.108 
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>> H2_useSVM16 
    strain    RealStress     SV16  
    ______    __________    ______ 
 
    0.001       9.1584      33.037 
    0.002        18.29       45.31 
    0.003       27.422      56.359 
    0.004       36.554      66.258 
    0.005       45.686       75.08 
    0.006       54.818      82.898 
    0.007        63.95      89.786 
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6. Neural Network Models 

6.1 First NN Model1 

The NN has one hiden layer. 

....'LayerSizes', 10, 
    'Activations', 'relu', 
    'Lambda', 0, 
    'IterationLimit', 1000, 
    'Standardize', true); 
>> H2_modelNN1 
 
*************************************** 
    Nr      LM       RealValue      NN   
    __    _______    _________    ______ 
 
     1       1732     1793.4      1768.9 
     2     1860.7     1862.4      1855.2 
     3     1898.5     1931.4        1911 
     4     2020.2     2000.4      2003.1 
     5       2053     2069.4      2055.2 
     6     1280.4     1358.4      1359.6 
     7     1325.2     1409.5      1437.7 
     8     1350.6     1460.6      1484.2 
     9     1390.2     1511.7      1494.5 
    10     1453.7     1562.8      1536.2 
    11     776.57      691.2      655.52 
    12     830.27     717.77      749.93 
    13     817.05     744.33       798.6 
    14     924.42      770.9      787.92 
    15     862.47     797.46      810.36 
    16     590.41     426.61      474.05 
    17     458.26     443.02       541.8 
    18     604.86     459.42      652.92 
    19     560.09     475.83      695.52 
    20     585.09     492.24      782.71 
    21    -37.373     90.999      99.325 
    22     -34.88     94.498      94.041 
    23    -32.447     97.997       95.63 
    24    -52.129      101.5       106.8 
    25    -37.333        105      94.882 
    26    -103.89     67.043      57.712 
    27    -114.62     69.621      58.986 
    28    -120.05       72.2      54.844 
    29    -124.01     74.779      55.906 
    30    -120.17     77.357      56.941 
    31     56.668     56.218      58.724 
    32     57.595     58.379      58.315 
    33      50.58      60.54       63.18 
    34     79.963     62.701      61.615 
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    35     70.683     64.862      68.378 
    36     1034.2       1022      995.85 
    37     1097.1     1061.3      1033.1 
    38     1121.6     1100.6      1082.3 
    39     1190.6     1139.9      1179.1 
    40     1244.3     1179.2      1190.7 
    41      638.1     642.72      631.49 
    42     668.63     667.43      658.34 
    43     692.83     692.15      707.84 
    44     742.13     716.86      756.03 
    45     711.31     741.58      779.49 
    46     465.52     480.46      529.22 
    47     468.47     498.92      574.27 
    48     530.87     517.39      625.46 
    49      560.6     535.85      710.36 
    50     541.03     554.31      789.52 
    51     1101.1     1176.2      1135.2 
    52     1174.1     1221.4      1192.4 
    53     1182.4     1266.6      1231.3 
    54     1291.1     1311.9      1298.1 
    55     1271.3     1357.1      1298.5 
    56     500.97     527.67      538.22 
    57     550.47     547.96      596.48 
    58     576.83     568.26      641.77 
    59     548.51     588.55      653.03 
    60     576.88     608.84      714.61 
 

 

The program H2_UseNN1 gives the predictions for specimen #7 and all the strain values. 
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>> H2_UseNN1 
    strain    RealStress    Predicted 
    ______    __________    _________ 
 
    0.001       9.1584       3.1531           ????? 
    0.002        18.29        25.99   
    0.003       27.422       34.617   
    0.004       36.554       36.614   
    0.005       45.686       45.903   
    0.006       54.818       55.192   
    0.007        63.95       64.481   
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6.2  NN Model1 (Direct) 

Characteristics: "Standardize", true; 
"LayerSizes",10; 
"Activations", "relu"; 
IterationLimit=100,Lambda=0 
 
>> H2_modelNN1D 
 
RMSEValid= 
       23.985 
 
    Nr    RealValue     NND   
    __    _________    ______ 
 
     1     1793.4      1751.2 
     2     1862.4        1877 
     3     1931.4      1919.2b 
     4     2000.4      2035.6 
     5     2069.4      2067.1 
     6     1358.4      1347.6 
     7     1409.5      1435.9 
     8     1460.6        1471 
     9     1511.7      1496.8 
    10     1562.8      1532.9 
    11      691.2      658.42 
    12     717.77      719.43 
    13     744.33      748.96 
    14      770.9      781.51 
    15     797.46      761.74 
    16     426.61      563.99 
    17     443.02      598.33 
    18     459.42      686.84 
    19     475.83      736.81 
    20     492.24      829.11 
    21     90.999      33.024 
    22     94.498      18.488 
    23     97.997      37.633 
    24      101.5      30.626 
    25        105      51.785 
    26     67.043      35.395 
    27     69.621      32.712 
    28       72.2      52.718 
    29     74.779      62.093 
    30     77.357      38.266 
    31     56.218      49.459 
    32     58.379      57.133 
    33      60.54      57.705 
    34     62.701       56.72 
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    35     64.862      57.527 
    36       1022      1044.1 
    37     1061.3      1098.4 
    38     1100.6      1128.5 
    39     1139.9      1236.8 
    40     1179.2      1248.9 
    41     642.72      627.12 
    42     667.43      665.68 
    43     692.15      686.29 
    44     716.86      696.36 
    45     741.58      688.86 
    46     480.46      553.68 
    47     498.92      610.35 
    48     517.39       674.5 
    49     535.85      737.42 
    50     554.31      798.96 
    51     1176.2        1125 
    52     1221.4      1191.8 
    53     1266.6      1219.3 
    54     1311.9      1305.5 
    55     1357.1      1288.1 
    56     527.67      544.26 
    57     547.96      584.32 
    58     568.26       625.9 
    59     588.55      624.68 
    60     608.84      635.05 
 
RMSE= 
       90.388 
mdlLoss = 4101.1 
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Figure 10_2_NN1 Direct  
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6.3  The second NN - Model10 

NN with optimization 
    'LayerSizes', [166 280 298], ... 
    'Activations', 'relu', ... 
    'Lambda', 3.63e-08, ... 
    'IterationLimit', 1000, ... 
    'Standardize', true); 
 
>> H2_modelNN2 
RMSE(Valid)= 
      6.735 
 
    Nr      LM       RealValue      NN   
    __    _______    _________    ______ 
 
     1       1732     1793.4      1769.9 
     2     1860.7     1862.4      1825.2 
     3     1898.5     1931.4      1859.4 
     4     2020.2     2000.4      1918.9 
     5       2053     2069.4        1958 
     6     1280.4     1358.4      1363.9 
     7     1325.2     1409.5      1424.6 
     8     1350.6     1460.6      1449.5 
     9     1390.2     1511.7      1448.2 
    10     1453.7     1562.8      1442.6 
    11     776.57      691.2       670.6 
    12     830.27     717.77      723.63 
    13     817.05     744.33      774.62 
    14     924.42      770.9      742.99 
    15     862.47     797.46      732.08 
    16     590.41     426.61      426.63 
    17     458.26     443.02      445.04 
    18     604.86     459.42      465.19 
    19     560.09     475.83      481.25 
    20     585.09     492.24      510.72 
    21    -37.373     90.999      92.233 
    22     -34.88     94.498      96.111 
    23    -32.447     97.997      102.73 
    24    -52.129      101.5      107.33 
    25    -37.333        105      113.38 
    26    -103.89     67.043      67.583 
    27    -114.62     69.621      70.387 
    28    -120.05       72.2      73.247 
    29    -124.01     74.779      76.896 
    30    -120.17     77.357      80.282 
    31     56.668     56.218      55.927 
    32     57.595     58.379      57.377 
    33      50.58      60.54      59.053 
    34     79.963     62.701      60.786 
    35     70.683     64.862      62.169 
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    36     1034.2       1022      1015.5 
    37     1097.1     1061.3      1073.3 
    38     1121.6     1100.6      1116.5 
    39     1190.6     1139.9      1168.5 
    40     1244.3     1179.2      1211.7 
    41      638.1     642.72      652.63 
    42     668.63     667.43       671.7 
    43     692.83     692.15      701.27 
    44     742.13     716.86      724.54 
    45     711.31     741.58      746.62 
    46     465.52     480.46      472.74 
    47     468.47     498.92      481.76 
    48     530.87     517.39      499.55 
    49      560.6     535.85      522.78 
    50     541.03     554.31       541.7 
    51     1101.1     1176.2      1152.9 
    52     1174.1     1221.4        1196 
    53     1182.4     1266.6      1231.5 
    54     1291.1     1311.9      1280.4 
    55     1271.3     1357.1      1302.3 
    56     500.97     527.67       525.6 
    57     550.47     547.96      555.78 
    58     576.83     568.26      578.95 
    59     548.51     588.55      586.37 
    60     576.88     608.84      609.34 
Optimizer: Bayesian optimization 
RMSE(test)=34.385 
MSE(Test)=1182.3 
MAE(Test)=19.82 
Model size= 1MB 
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The program H2_UseNN2 gives the predictions for specimen #7 and 
all the strain values and recalls the NN1's predictions. 
 
>> H2_UseNN2 
     The following table compares the predictions made by the two 
neural networks. 
 
    strain     NN1      RealStress     NN2   
    ______    ______    __________    ______ 
 
    0.001     3.1531      9.1584       9.756 
    0.002      25.99       18.29      18.649 
    0.003     34.617      27.422      27.809 
    0.004     36.614      36.554      36.448 
    0.005     45.903      45.686      45.113 
    0.006     55.192      54.818      54.097 
    0.007     64.481       63.95      60.975 
 
Conclusion 
 
 The proposed way to enrich the dataset (the data-generating process ) seems to 

be effective for treating this problem of using ML prediction. 
 
 The accuracy of the predictions also depends on the accuracy of the initial data 

furnished by the measurements. 
 
 An analysis should be conducted concerning some parameters' values (d, M, 

the number of specimens) to study the parameters' contribution to the models' 
accuracy. This analysis is reported for an ulterior stage of the project if it will 
be needed. 

 
 The set of predictions must be enriched to validate the ML models over very 

large zones of the prediction space.  
 
 

7. GENERALIZATION TEST USING THE MODEL NN2. 

So far, the generalization accuracy of ML models has been tested using the testing datasets 

reserved for this objective. The testing dataset comes from the same initial traction tests; they have 

the same real physical support. The real generalization power of the ML model would be proven for 

data points that the ML model has never "seen". 



18 
 

 

In this section, we shall test the generalization power of the NN2 model, i.e., the best-generated 

model, considering data points corresponding to fictitious specimens. 

Hypothesis: The data points are fictitious; they belong neither to the training nor the test data. 
 
Objectif: To test the generalization aptitude of the NN2 model.  
 
The script H2_UseNN2_generalization considers data points that are generated by changing 
the two middle orientations of specimen 8 (…45, 45…) with 4 pairs of values ([40,40], [20,20], [20,-
20], [-20,-20])). It predicts the Stress for 30 strain values. 
 
The strain column shows the 30 values of the strain equally spaced out in the given range. The 
predicted stress value is given in the pred_NN2 column.  
The column ss_real_8 shows the stress value for specimen 8 at the same strain. This value can be 
used to compare the two specimens to see whether the change produced by the two new orientations 
is realistic. 
 
>> H2_UseNN2_generalization 
 
The fictitious specimens are "neighboring" S8: 
PATTERN(8,:)=[0. 45. 0. 90. 0. -45. 0. 45. 45. 0. -45. 0. 90. 0. 45. 0.]; 
 
New pattern: the middle values are changed 
NEW PATTERN=[0. 45. 0. 90. 0. -45. 0. 40. 40. 0. -45. 0. 90. 0. 45. 0.]; 
 
 
      strain      ss_real_8    pred_NN2 
    __________    _________    ________ 
 
    0.00051266      39.36       44.474  
     0.0010253     78.666       85.151  
      0.001538     117.97       123.93  
     0.0020507     157.28       162.53  
     0.0025633     196.58       201.91  
      0.003076     235.89       243.06  
     0.0035886      275.2       283.33  
     0.0041013      314.5       322.53  
      0.004614     353.81       359.95  
     0.0051266     393.11       398.18  
     0.0056393     432.42       438.08  
      0.006152     471.73       479.12  
     0.0066646     511.03       518.58  
     0.0071773     550.34       557.92  
       0.00769     589.64       597.44  
     0.0082026     628.95       638.04  
     0.0087153     668.26       676.85  
      0.009228     707.56       715.06  
     0.0097406     746.87        753.4  
      0.010253     786.17       792.45  
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      0.010766     825.48       832.01  
      0.011279     864.78       873.07  
      0.011791     904.09       913.47  
      0.012304      943.4       954.75  
      0.012817      982.7       1000.3  
      0.013329       1022       1048.9  
      0.013842     1061.3       1094.9  
      0.014355     1100.6       1135.9  
      0.014867     1139.9       1178.1  
       0.01538     1179.2       1222.1  
 
 
New pattern: the middle values are changed 
NEW PATTERN=[0. 45. 0. 90. 0. -45. 0. 20. 20. 0. -45. 0. 90. 0. 45. 0.]; 
 
 
      strain      ss_real_8    pred_NN2 
    __________    _________    ________ 
 
    0.00051266      39.36       64.802  
     0.0010253     78.666       104.27  
      0.001538     117.97       143.65  
     0.0020507     157.28       184.09  
     0.0025633     196.58       225.35  
      0.003076     235.89       266.53  
     0.0035886      275.2       308.15  
     0.0041013      314.5        349.8  
      0.004614     353.81       394.45  
     0.0051266     393.11          439  
     0.0056393     432.42       482.58  
      0.006152     471.73       522.31  
     0.0066646     511.03       562.62  
     0.0071773     550.34       602.58  
       0.00769     589.64       641.33  
     0.0082026     628.95       680.05  
     0.0087153     668.26       718.55  
      0.009228     707.56       757.06  
     0.0097406     746.87       797.97  
      0.010253     786.17       841.82  
      0.010766     825.48        887.6  
      0.011279     864.78       935.27  
      0.011791     904.09       982.03  
      0.012304      943.4       1027.7  
      0.012817      982.7       1075.9  
      0.013329       1022       1123.7  
      0.013842     1061.3       1164.5  
      0.014355     1100.6       1206.3  
      0.014867     1139.9       1248.5  
       0.01538     1179.2       1289.5  
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New pattern: the middle values are changed 
NEW PATTERN=[0. 45. 0. 90. 0. -45. 0. 20. -20. 0. -45. 0. 90. 0. 45. 0.]; 
 
 
   strain      ss_real_8    pred_NN2 
    __________    _________    ________ 
 
    0.00051266      39.36       74.537  
     0.0010253     78.666       120.06  
      0.001538     117.97       165.44  
     0.0020507     157.28       210.68  
     0.0025633     196.58       256.08  
      0.003076     235.89       301.33  
     0.0035886      275.2       348.86  
     0.0041013      314.5       394.38  
      0.004614     353.81       439.93  
     0.0051266     393.11        485.3  
     0.0056393     432.42       528.65  
      0.006152     471.73       572.35  
     0.0066646     511.03       615.23  
     0.0071773     550.34       657.91  
       0.00769     589.64       702.49  
     0.0082026     628.95       749.76  
     0.0087153     668.26       798.28  
      0.009228     707.56       847.01  
     0.0097406     746.87       896.05  
      0.010253     786.17        943.3  
      0.010766     825.48          993  
      0.011279     864.78       1043.2  
      0.011791     904.09       1093.5  
      0.012304      943.4       1145.3  
      0.012817      982.7       1193.5  
      0.013329       1022       1242.2  
      0.013842     1061.3       1288.4  
      0.014355     1100.6       1330.6  
      0.014867     1139.9       1371.8  
       0.01538     1179.2         1413  
 
 
New pattern: the middle values are changed 
NEW PATTERN=[0. 45. 0. 90. 0. -45. 0. -20. -20. 0. -45. 0. 90. 0. 45. 0.]; 
 
    strain      ss_real_8    pred_NN2 
    __________    _________    ________ 
 
    0.00051266      39.36       83.895  
     0.0010253     78.666       128.42  
      0.001538     117.97       174.22  
     0.0020507     157.28       220.58  
     0.0025633     196.58       266.74  
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      0.003076     235.89       314.29  
     0.0035886      275.2       364.12  
     0.0041013      314.5       411.43  
      0.004614     353.81       453.36  
     0.0051266     393.11       495.92  
     0.0056393     432.42       538.56  
      0.006152     471.73       581.36  
     0.0066646     511.03       625.21  
     0.0071773     550.34       670.05  
       0.00769     589.64       716.49  
     0.0082026     628.95       766.19  
     0.0087153     668.26       816.25  
      0.009228     707.56       867.16  
     0.0097406     746.87       917.29  
      0.010253     786.17       967.76  
      0.010766     825.48       1017.8  
      0.011279     864.78       1070.1  
      0.011791     904.09       1122.9  
      0.012304      943.4       1174.6  
      0.012817      982.7       1218.4  
      0.013329       1022       1257.1  
      0.013842     1061.3       1298.5  
      0.014355     1100.6       1339.8  
      0.014867     1139.9       1381.1  
       0.01538     1179.2       1422.4  
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The difficulty is in validating the predictions in this stage. Verifying the predictions using a 
simulation platform or, even better, making real tensile tests would be necessary. Our colleagues 
from P2 will accomplish this task. 
 

PART II 

8. ML algorithms that Emulate Metaheuristic Algorithms for 

optimal decision-making 

Employing Metaheuristic algorithms for the optimal decision-making 
process. 
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Some optimization problems need a metaheuristic algorithm (MA) in searching for the optimal 

solution, especially when the optimization function has difficult characteristics (distributed 

parameters, nonlinearities, etc.). That is a vast subject, already treated in the literature, that renders 

MAs realistic candidate tools for the optimization modules (optimizers). These tools are robust and 

flexible but sometimes involve very large computation efforts. There is an interesting and effective 

approach that allows replacing an MA algorithm with an ML algorithm only in the execution phase 

to reduce drastically the computation effort. 

This report's authors have proposed the analysis of possible "equivalence" between ML 

algorithms and MA within two simulated studies. 

 

 
II.1 MetaheurisƟc algorithm for opƟmal decision-making 

In Figure II.1, the optimal decision-making is presented as a closed-loop evolution, where: 

 X (XX) is the set of variables whose evolution must be optimized, and U* is the optimal 

decision variable set. 

 The objective function is a function of vectors X and U, which must be optimized. 

 The variable k covers the situation when the decision process is recursive. If this is not 

the case, the indexation (k and k+1) must not be considered. 

In this figure, the optimizer is based on the Particle Swarm Optimization metaheuristic (an 

adaptive version, Adaptive PSO Algorithm). Any other metaheuristic can be used; a very realistic way 
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to construct optimizers is to use Genetic Algorithms (Evolutionary Algorithms). Generally speaking, 

we can use an appropriate MA for the optimal decision problem at hand. 

Roughly speaking, the optimizer responds to the following problem: "When the process is 

characterized by the variables set X, what are the values of the decision variables U that optimize the 

objective function?". The optimizer finds the solution: U*. 

The following paper presents research results obtained in the framework of this project, and it 

describes the principle of the possible equivalence between ML algorithms and MAs for optimal 

decision-making. 

Mînzu, V.; Arama, I.; Rusu, E. Machine Learning Algorithms That Emulate Controllers Based 

on ParƟcle Swarm OpƟmizaƟon—An Application to a Photobioreactor for Algal Growth. Processes 

2024, 12, 991, https://doi.org/10.3390/pr12050991. 

Remark 1: As a general principle, if an optimizer is constructed using an MA, then we can 

achieve an ML algorithm that "captures" the optimality of the MA. The ML algorithm can emulate 

the MA (Figure II.2). 

 

II.2 The ML optimizer that is "equivalent" to an MA optimizer 

We can construct a new optimizer, called ML optimizer, which is simpler than the previous one 

because it contains only the trained ML model without a searching process or integrations. 

In the mentioned paper, this principle is applied to a specific optimal decision process, the 

optimal control of a dynamic process. (Because a specific control structure was adopted, a process 

model is considered as an example: a photobioreactor). All of these do not affect the generality of the 

presentation.  

Remark 2: The paper presents general principles and implementation aspects of the ML algorithm, 

which "captures" the optimality of the APSOA, even though it exemplifies the procedure 

using a particular optimizer. 

Why is our desideratum to replace the APSOA (or any MA) optimizer? 
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Owing to extensive searchings for the optimal solution inside space X and possible numerous 

numerical integrations, there is a big computational effort that leads to a large optimizer execution 

time. The main motivation of this work was to decrease the computational effort and, consequently, 

the optimizer execution time. This work proposed replacing the APSOA with an ML model that has 

"learned" the optimal behavior of the APSOA. 

Remark 3. The training data are obtained through simulations of a large enough set of decision-

making using the MA optimizer (here, the APSOA). 

The data set generation supposes a large enough number of optimizer's simulations using 

APSOA. After each simulation of the optimizer, a couple of vectors (X, U*) are recorded (see Figure 

II.1); that is a data point. The simulations are conducted in the initial phase to collect the data points 

for the training and testing. 

A design procedure is given below. 

Design Procedure 

1. Write the "APSOA Optimizer" program for the considered optimization problem 

based on the APSOA, which finds the quasi-optimal solution U* for a given initial 

vector X. 

2. Repeat M times the execution of "APSOA Optimizer" to produce M sequences (X, U) 

and save them in a data structure. 

3. Choose, construct, and test an algorithm called "Optimizer_ML" that emulates the 

optimal behavior of the APSOA. This step is repeated until an accurate and appropriate 

model is found. 

4. Integrate the "Optimizer_ML" into the final optimization program. 

The design procedure can also be followed mutatis mutandis when the optimization problem is 

solved using evolutionary algorithms (such as genetic algorithms). The program at step 1 must use 

the new MA to search for the quasi-optimal solution. Details for this case can be found in the 

following paper, having the same authors: 

Mînzu, V.; Arama, I. A Machine Learning Algorithm That Experiences the Evolutionary Algorithm's Predictions—
An Application to Optimal Control; Mathematics 2024, 12(2), 187. https://doi.org/10.3390/math12020187. 

The new optimizer should preserve the optimal behavior of the decision-making process. In identical 

conditions, the ML decision process must also be quasi-optimal. 
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Remark 4. The "Optimizer_ML" emulates the "APSOA Optimizer," which means that both have 

the same behavior; they give near identical quasi-optimal solutions. 

Because the linear regression could seem much too simple, we have also studied other types of 

models (trees, support vector machines, Regression Neural Networks, and Gaussian processes) trying 

to improve capturing the optimality, the final target being that the designed ML optimizer would better 

approach the optimal solution. For the case study presented in the article mentioned above, the 

obtained models perform less than those of the Linear Regression and RNN models. In other 

optimization cases, many kinds of ML algorithms must also be analyzed, considering the ML 

optimizer's size. It is a design matter. 

Conclusion: 

• When we solve a new optimization problem, sometimes we need an MA (PSO, EA, 

etc.) that searches for the optimal solution U* inside of the optimization space U. If the 

optimizer's execution time is not acceptable, we can use the approach presented before 

to create an ML optimizer. However, initially, we need the MA to search for the 

optimal solution. 

• The ML optimizer replaces the MA optimizer only in execution when the optimal 

decision is made. So, the optimizer's execution time is diminished. 

The article mentioned above gives more details concerning the principle and the 

implementation of this approach. These details are not repeated in this presentation. In addition, the 

Supplementary Materials attached to this article contain all the MATLAB programs that can be used 

in our next work. 

 

PART III 

9. The generalization power of the ML algorithms already 

developed. 

This part describes how we can test the generalization power of ML models already developed 

in the first part of this report. The generalization power of the ML model would be proven for data 

points that the model has never "seen"; that is, they belong neither to the training data nor the test 

data. So, the first problem is to generate data points situated in the model's  
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The following text was written to propose an article with authors from UGAL and P2 in the 

future. 

4. Implementation of Machine Learning Models 
 This section is dedicated to the intricate process of generating ML models for the stress-strain 
dependence during the tensile test of different specimens. The initial step involves preparing the 
datasets for the learning process and constructing the parametric and nonparametric ML models. 

As mentioned, the main objective is to construct ML models that would apprehend all the 
measurements described before and predict the Stress value for any pattern (combination of 
orientations) and a given Strain value. Our work's specific objectives were set with the anticipation 
of achieving this ultimate goal in mind: 

1. Generate a dataset of significant size. This dataset will be used to construct the ML model, 
enabling it to provide a generalized response for any pattern and an appropriate Strain value. 

2. Construct a parametric model (e.g., multiple linear regression) that is easy to understand and 
apply and can be compared with the following models. 

3. Construct some nonparametric models (SVM, decision trees, Gaussian process regression, and 
neural networks), analyze their accuracy, and compare them to the parametric model. Out of 
many ML models investigated, we chose to present two nonparametric models (SVM and 
Regression NN). The last ones yielded four trained and tested models, the most effective and 
appropriate to the considered data set. 

4. Carefully select the most accurate parametric models that could be used in further research, 
providing a solid foundation for future studies. 

Remark 1: For our problem, many SVM and Regression NN models could be constructed, some of 
them having potentially superior capabilities to predict the behavior of the stencils. Our 
objective was not to find their best but to validate our approach: to prove that ML models 
can accurately predict stress-strain behavior. 

4.1 Data Preparation 

*** This part is covered by PART 1.*** 

4.2 Construction of ML Models 

4.2.1 A multiple linear regression model 

The first ML model constructed to fit the data set is parametric: a multiple linear regression model 
that allows the possibility of including nonlinear terms as the interactions, that is, the product of 
predictor variables. The model maintains its linearity about its coefficients.  

Out of the linear regression models developed in our work, we present only that based on the step-
wise regression strategy. The latter consists of adding or removing features from a constant model. In 
the MATLAB system used in our implementation, this strategy is implemented by a specialized 
function step-wise (T), which returns a model that fits the dataset in T.  

The features of this model are named x1,…,x16 for the orientations 1, 2,…, 16, and St and Ss for 
the Strain and Stress, respectively. Appendix A describes the results obtained using the step-wise 
regression strategy. One of the best linear regression models for Stress has the following structure: 

Ss ~ 1 + x1 + x2 + x9 + x12 + x13 + St + 
     + x1*x9 + x1*St + x2*x13 + x2*St + x9*St + x12*St + x13*St 
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Besides the intercept and terms corresponding to six predictors, all the other terms are interactions of 
the predictors. Its coefficients are given in Appendix A as well. Figure 22 presents the predicted and 
training values for all 300 training records (data points). Figure 23 shows a global image of the 
model's generalization efficiency using the 60 data points. 

 
Figure 22. Predicted versus real values for the training 

data set 

 
Figure 23. Predicted versus real values for the test data 

set 

Usually, the training and test process results can be characterized by statistics, allowing the ML 
models constructed using the same data set to be compared. The statistics given in Table 22 for 
different ML models are the Root mean squared error (RMSE), R-squared, and Mean absolute error 
(MAE) values (see [77]).  

 Statistics 
SW Linear 
Regression 

SVM 
Regression 1 

SVM 
Regression 2 

RNN1 RNN2 

Training results 

RMSE 52.045 34.93 46.903 41.135 6.375 

R-Squared 0.98 0.99 0.98 0.99 1. 

MAE 37.42 28.324 31.44 19.132 3.9465 

Test results 

RMSE 91.091 52.108 86.383 99.206 34.385 

R-Squared 0.97 0.99 0.98 0.97 1. 

MAE 66.667 43.38 66.255 67.875 19.829 

Model size 22 kB 16 kB 40 kB 8 kB 1 MB 

Table 22. Statistics of the training and test process results and model size for different ML models. 

 Let's notice the statistics characterizing the Step-Wise Linear Regression model presented in 
this sub-section, given in the column SW Linear Regression. These will allow us to ascertain the 
superiority of the next proposed ML models. Besides the first column, Table 22 also presents the 
statistics of the four trained and tested ML models described in the next subsections. The model size 
is also given. 

 Although the regression model has good predictions for most specimens, it does not give good 
predictions for those with a small stress range; their behavior is not accurately "learned." Figures 22 
and 23 show certain data points for which the predicted Stress value is negative. There are ten such 
data points, which we shall call critical, corresponding to the specimens whose Stress range is very 
narrow. These bad predictions are given in Table 23. 
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Stress True value 90.999 94.498 97.997 101.5 105. 67.043 69.621 72.2 74.779 77.357 

Stress Predicted 
value -46.32 -23.93 -29.72 -18.4 -27.3 -83.92 -118.7 -102. -121.2 -129.2 

Table 23. The set of the worst predictions made by the SW Linear Regression Model. 

This fact led to investigating nonparametric ML models capable of overpassing this drawback. 

Remark 2: Besides ameliorating the statistics, improving the critical data points' predictions was 
challenging for the new ML models. The following subsections present only models with 
better prediction capabilities, including the critical data points. 

 

4.2.2 Support Vector Machine Models 

 Support Vector Machine generated good ML models for our problem. Out of the SVM models 
constructed in our work, we present, in the sequel, only two SVM models responding to our 
objectives. The first SVM Model, called  SVM Regression 1, has a cubic Kernel function and a set 
of intern Hyperparameters (as defined within MATLAB system – see [88]): PolynomialOrder, 
Standardize, KernelScale, BoxConstraint, Epsilon. Appendix A gives details concerning the 
Hyperparameters of the SVM Regression 1. 

 
This model was trained and tested using the Regression Learner application (see [88]), which 

led to the results presented in Table 22, column SVM Regression 1. The RMSE values are smaller 
than those of the SW linear Regression model, proving that the SVM works better. Figures 24 and 
25 illustrate this statement if compared to Figures 22 and 23. 
 

 
Figure 24. Predicted versus real values for the training data set 

- SVM Regression 1 

 

 
Figure 25. Predicted versus real values for the test 

data set - SVM Regression 1 

The predictions for the critical data points are given in Table 24. Although they are not very good, 
they are better than those in Table 23, at least because they are positive. 

Stress True value 90.999 94.498 97.997 101.5 105. 67.043 69.621 72.2 74.779 77.357 

Stress Predicted 
value 47.679 35.616 39.292 42.684 34.877 82.007 89.711 81.055 81.242 56.943 

Table 24. The set of the critical predictions made by the SVM Model 1. 
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We also constructed another SVM model that predicts very well the critical data points, whose 
statistics are given in a column called SVM Regression 2. The Hyperparameters' Model is the 
following: 

Preset: Optimisable SVM, 
Kernel function: Quadratic 
Kernel scale: Automatic. 

The training process uses Bayesian optimization to optimize the combination of hyperparameters. 

 Table 25 shows excellent predictions for the critical data points, but the statistics corresponding 
to this new SVM model are inferior to those of the SVM Regression 1.  

Stress True value 90.999 94.498 97.997 101.5 105. 67.043 69.621 72.2 74.779 77.357 

Stress Predicted 
value 93.074 95.691 100.18 105.26 110.17 68.82 71.944 74.032 77.312 80.144 

Table 25. The set of the critical predictions made by the SVM Model 2. 

Moreover, the new model size, 40 kB, is larger than the first. In conclusion, owing to most of its 
characteristics, the SVM Regression 1 model can be considered better than the second one. 

4.2.3 Regression Neural Network Models 

 This subsection presents two other nonparametric ML models using Regression Neural 
Networks. The first one uses a Narrow Neural Network in MATLAB system terminology. Its statistics 
are shown in column RNN 1 of Table 22.  

 Details concerning the model RNN 1 are given in Appendix A. The hyperparameters are 
optimized using heuristic procedures. The RMSE and MAE values are better than the previous models 
in Table 22, showing better predicting accuracy. Moreover, the model's size is the smallest of all 
presented ML models, having 8 kB. 

The predicted Stress values for the critical data points are very good, like those presented in Table 25, 
proving that this problem is also solved.  

The more accurate prediction is obtained using another Regression NN, the RNN 2 model, whose 
statistics are displayed in the last column of Table 22. Details concerning the model RNN 2 are given 
in Appendix A. It is an RNN with 3 layers whose hyperparameters are found using Bayesian 
optimization. 

Table 26 shows that the predictions for the critical data points are very good, the best in comparison 
with the previous models. 

Stress True value 90.999 94.498 97.997 101.5 105. 67.043 69.621 72.2 74.779 77.357 

Stress Predicted 
value 92.233 96.111 102.73 107.33 113.38 67.583 70.387 73.247 76.896 80.282 

Table 26. The set of the critical predictions made by the RNN 2. 

The price to pay for the very good accuracy of RNN 2 is the larger size of the model, which is 1 MB. 
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Figure 26. Predicted versus real values - the training of RNN2 

 

 
 
Figure 27. Predicted versus real values - the test of 

RNN2 

Figures 26 and 27 show the efficiency of the training and test processes, respectively, and prove that 
RNN2 is the more accurate ML model for the given data set. According to how the ML model is used, 
RNN1 can replace RNN2 and be a good solution for our prediction problem due to its small model 
size and good accuracy. 

10. 5. Forecasting New Stratification Combinations 
 This section will present how to exploit the ML models presented in Section 4, that is, to 
replicate and predict the behavior of carbon fiber-epoxy composites for different orientations, 
including novel stratification combinations. 

5.1 Stress-strain predictions for new combinations 

 So far, the generalization accuracy of ML models has been tested using the testing datasets 
reserved for this objective. The testing dataset comes from the same initial traction tests; they have 
the same real physical support. The generalization power of the ML model would be proven for data 
points that the model has never "seen"; that is, they belong neither to the training data nor the test 
data. 

The RNN2 model was used as the most performant ML model for stress prediction in our tests. 

 This subsection considers the case when a new combination has the same structure as one that 
already contributed to the ML model construction, differing from this in only a few layer orientations. 
For example, we can generate novel stratification combinations derived from the S8's pattern as 
"neighbors" of this one: the middle sequence 45/45 is replaced by /. The new pattern, denoted 
Snew, is given below: 

 Snew = [0/45/0/90/0/-45/0///0/-45/0/90/0/45/0]. 

Under this hypothesis, the ML model can cover and predict the new combination's behavior. 

 Four values (denoted ) have been considered that generated the four stratifications presented 
below for the composite materials. Figure 50 presents the predicted and real Stress values for =45 
and, for comparison, the predicted and simulated Stress values for =40. The blue curve is shorter 
because it stops at the beginning of the damaged zone; the Digimat VA simulation program can 
determine the latter. Currently, the predictions do not consider the damaged zones. 
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Figure 51. Predicted and real/simulated Stress values for =45 and =40. 

Figure 51 presents the predicted and simulated Stress values for =20 and, for comparison, =30. 
The continuous blue and red curves are shorter because they stop at the beginning of the damaged 
zone. 

 

Figure 52. Predicted and simulated Stress values for =20 and =30. 

Figures 51 and 52 involve the following remark.  

Remark 3. Two aspects can be stated: 
 The predictions made by the ML model are very good inside the considered elasticity 

zones. 
 Predictions give more significant errors at the end of the elasticity zones while 

remaining within acceptable limits. 

 Beyond the opportunity to compare predictions to real/simulated values, these examples based 
on the Snew pattern suggest how to solve a possible peculiar problem that seeks the most resistant 
stratification having a given pattern. 
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5.1 Stress-strain predictions for new random combinations 

 In this part of our work, we considered specimens with randomly generated layer orientations, 
which, in other words, did not contribute to the dataset used to construct the ML model. Then, we 
compared the predictions for these specimens made by the ML model with DIGIMAT simulation 
results. Only four specimens with randomly generated combinations are considered to make this 
presentation easy to follow. To remain inside the ML model's generalization area, we first chose four 
base specimens submitted to tensile tests, PAT2, PAT6, PAT9, and PAT11, that contributed to the 
dataset used to train the ML model. They have different behaviors in the space Strain ̶ Stress. Each 
layer orientation of these specimens was modified independently using a uniformly distributed 
perturbation in the range [-4°, +4°]. The resulting specimens with randomly generated orientations 
are NEW2, NEW6, NEW9, and NEW11, which are quite different from the initial ones but remain in 
the model representation area. For example, Figure 53bis shows the sixteen orientation values of 
NEW2 and base specimen PAT2. 

 

Figure 53bis. Layer orientations of NEW2 and PAT2 

Table A1 in APPENDIX B gives the layer orientations for all the base and perturbated specimens and 
the difference between them (DIFF2, DIFF6, DIFF9, DIFF11). Because the base specimens 
contributed to the dataset used to train and test the ML model, their stress predictions given strain 
values are already accurate. The accuracy of the stress prediction must be verified for the new 
specimens by comparing them with the values given by the DIGIMAT simulations. 

Figure 5.3 presents all the curves obtained through simulation and prediction and ascertains the very 
good prediction accuracy of the ML model made for the four new specimens. The pairs of curves 
having the same color prove that there is a small prediction error for all strain values. 
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Figure 53. Comparison between the predicted and DIGIMAT values for the four randomly 
generated specimens. 

To zoom in on the prediction error, Figure 54 shows the prediction relative error in a certain number 
of points situated in the Strain range considered in Figure 53. 

  

Figure 54. Relative prediction errors for the four randomly generated specimens. 

The following equation gives the prediction relative error: 

predicted stress value - simulated stress value
prediction relative error = 

simulated stress value
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The relative error is placed in the interval [-0.04, 0.06], which means the prediction accuracy is greatly 
satisfactory. The proposed ML model has a good generalization power if it is appropriately employed, 
that is, 

 the specimens are inside the ML model representation domain and 

 the strain values are inside the range corresponding to the elasticity zone. 

Remark 4. Generally, there is no procedure to verify if the first constraint is rigorously met. 
Depending on the dataset and practical application, the user can consider a certain ML 
model representation domain a priori and estimate if this constraint is met. After that, 
reliable predictions can be made. 

 

 

 

APPENDIX A 

Details concerning the SW Linear Regression model 

The regression model is obtained using the step-wise function: 

model   stepwise(T) 

*** This part is already presented in PART 1 *** 

 

Details concerning the SVM Regression 1 

Hyperparameters Model: 
Preset Quadratic SVM 
Kernel function: Cubic 
Kernel scale 3.001 
Box constraint: Automatic 
Epsilon Auto 
Standardisation data: Yes 
Optimiser: Not applicable 

Details concerning model RNN 1 
Hyperparameters Model: 

Preset Narrow NN 
Number of fully connected layers 1 
First Layer size 10 
Activation ReLU 
Iteration limit 1000 
Regularisation strength (lambda) 0 
Standardisation data: Yes 
Optimiser: Not Applicable 

Details concerning model RNN 2 
Preset Optimizable NN 
Iteration limit: 1000 
Optimiser: Bayesian optimisation 

The training of RNN 2 is made using the fitrnet function: 
RegNN = fitrnet(... 
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    predictors, ... 
    response, ... 
    'LayerSizes', [166 280 298], ... 
    'Activations', 'relu', ... 
    'Lambda', 3.6315e-08, ... 
    'IterationLimit', 1000, ... 
    'Standardise', true); 

 

 

Figure 5.1 Prediction versus simulation for the new pattern (a) 

 

Figure 5.2 Prediction versus simulation for the new pattern (b)  
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Figure 5.3 Prediction versus simulation for the new pattern (c)  

 

 

APPENDIX B 
 
 
              ang1      ang2      ang3      ang4     ang5      ang6      ang7      ang8  
              _____    ______    ______    ______    _____    ______    ______    ______ 
 
    PAT2      20.00    -20.00     20.00    -20.00    20.00    -20.00     20.00    -20.00 
    NEW2      16.80    -20.05     19.67    -22.92    16.85    -22.06     17.68    -16.53 
    DIFF2     -3.20     -0.05     -0.33     -2.92    -3.15     -2.06     -2.32      3.47 
    PAT6      70.00    -70.00     70.00    -70.00    70.00    -70.00     70.00    -70.00 
    NEW6      71.47    -69.27     68.30    -70.32    73.18    -71.33     67.00    -68.95 
    DIFF6      1.47      0.73     -1.70     -0.32     3.18     -1.33     -3.00      1.05 
    PAT9      45.00      0.00    -45.00     90.00    45.00      0.00    -45.00     90.00 
    NEW9      46.59      3.31    -42.30     88.52    48.57     -1.31    -44.54     88.57 
    DIFF9      1.59      3.31      2.70     -1.48     3.57     -1.31      0.46     -1.43 
    PAT11      0.00     30.00      0.00     90.00     0.00    -30.00      0.00     30.00 
    NEW11     -3.49     26.87     -0.14     89.83     2.48    -33.05      3.61     32.53 
    DIFF11    -3.49     -3.13     -0.14     -0.17     2.48     -3.05      3.61      2.53 
 
              ang9     ang10     ang11     ang12     ang13    ang14     ang15    ang16  
              _____    ______    ______    ______    _____    ______    _____    ______ 
 
    PAT2      20.00    -20.00     20.00    -20.00    20.00    -20.00    20.00    -20.00 
    NEW2      23.49    -20.79     16.26    -21.91    16.71    -22.76    17.14    -22.26 
    DIFF2      3.49     -0.79     -3.74     -1.91    -3.29     -2.76    -2.86     -2.26 
    PAT6      70.00    -70.00     70.00    -70.00    70.00    -70.00    70.00    -70.00 
    NEW6      69.55    -73.38     67.92    -67.99    73.58    -72.32    69.08    -70.79 
    DIFF6     -0.45     -3.38     -2.08      2.01     3.58     -2.32    -0.92     -0.79 
    PAT9      90.00    -45.00      0.00     45.00    90.00    -45.00     0.00     45.00 
    NEW9      90.23    -48.59      3.12     45.28    92.95    -41.92    -1.90     42.29 
    DIFF9      0.23     -3.59      3.12      0.28     2.95      3.08    -1.90     -2.71 
    PAT11     30.00      0.00    -30.00      0.00    90.00      0.00    30.00      0.00 
    NEW11     29.95      1.22    -28.86     -0.13    92.30     -0.28    26.92     -0.82 
    DIFF11    -0.05      1.22      1.14     -0.13     2.30     -0.28    -3.08     -0.82 
 

Table A.1 The layers' orientations of the basic and new random specimens and their differences. 
 

 


